Acoustic two-port simulation model for the particle oxidation catalyst POC

The reduction of the exhaust noise from internal combustion engine (IC-engine) is mainly managed by proper silencer design, while less attention is paid to the acoustic performance of the after treatment devices (ATD). It is known from the earlier studies, that the transmission loss of a typical ATD unit can be quite significant. An ATD unit for diesel engines is classically assembled from several specific parts such as selective catalytic reducers (SCR), diesel oxidation catalysts (DOC) and diesel particulate filters (DPF). One new alternative to the conventional DPF is the particle oxidation catalyst (POC®). The substrate used in the POC-X type filter consists of fine, corrugated metallic wire mesh screens piled askew and rolled into a cylindrical shape. In this paper an acoustic two-port simulation model for POC-X is sought starting from the classical Kirchhoff solution for prediction of the acoustic wave attenuation in narrow channels. According to experimental studies, correction factors to the narrow channel two-port model are proposed.