Quantum-well heterostructure lasers

The various features peculiar to the operation of quantum-well semiconductor lasers are described and illustrated with data on single- and multiple-quantum-well Al x Ga 1-x As-GaAs heterostructures grown by metalorganic chemical vapor deposition (MO-CVD). Photo-pumped and p-n diode lasers (injection lasers) are described that are capable of continuous room temperature (CW 300 K) operation. The basic problems of carrier collection, thermalization, and quantum-well band filling are considered and have made clear the limits on single quantum-well laser operation and how these can be overcome with multiple quantum-well active regions. The idea that the steplike density-of-states of a quantum-well heterostructure can improve the operation of a semiconductor laser is shown to be valid. Also, it is shown that phonon participation in the operation of a quantum-well laser, which was not anticipated, is a major (even dominant) effect, with perhaps the phonon emission itself in the compact active region being stimulated. Besides the obvious freedom that quantum-well layers offer in how the active region of a semiconductor laser can be designed, quantum-well lasers are shown to exhibit a lesser sensitivity of the threshold current density on temperature, which is explained in terms of the step-like density-of-states and the disturbed electron and phonon distributions in the quantum-well active regions. Values as high as \sim437\deg C have been obtained for T 0 in the usual expression J_{th}(T) = J_{th}(0) \exp (T/T_{0}) . Since photopumped multiple-quantum-well MO-CVD Al x Ga 1-x As-GaAs heterostructures have operated as CW 300 K lasers with only 5-10 mW of photoexcitation (uncorrected for focusing and window losses, \lambda \sim 5145 A), it is suggested that quantum-well laser diodes can be made that will operate at ∼1 mA or even less excitation.

[1]  N. Holonyak,et al.  Absorption, stimulated emission, and clustering in AlAs‐AlxGa1−xAs‐GaAs superlattices , 1981 .

[2]  N. Holonyak,et al.  Absorption and stimulated emission in an AlAs-GaAs superlattice , 1981 .

[3]  Won-Tien Tsang,et al.  Extremely low threshold (AlGa)As modified multiquantum well heterostructure lasers grown by molecular‐beam epitaxy , 1981 .

[4]  P. Dapkus,et al.  The growth and characterization of metalorganic chemical vapor deposition (MO-CVD) quantum well transport structures , 1981 .

[5]  K. K. Mon,et al.  Deformation potentials of superlattices and interfaces , 1981 .

[6]  N. Holonyak,et al.  IR‐red GaAs‐AlAs superlattice laser monolithically integrated in a yellow‐gap cavity , 1981 .

[7]  H. Kroemer Simple rate equation model for hypothetical doubly stimulated emission of both photons and phonons in quantum-well lasers , 1981 .

[8]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[9]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[10]  G. Stillman,et al.  Transient and noise characteristics of quantum-well heterostructure lasers , 1981, IEEE Journal of Quantum Electronics.

[11]  N. Holonyak,et al.  Quenching of stimulated phonon emission in AlxGa1−xAs-GaAs quantum-well heterostructures , 1981 .

[12]  James J. Coleman,et al.  High‐energy (Visible‐red) stimulated emission in GaAs , 1981 .

[13]  Karl Hess,et al.  Alloy clustering in AlxGa1-xAs-GaAs quantum-well heterostructures , 1980 .

[14]  N. Holonyak,et al.  Visible‐spectrum multiple‐quantum‐well In1−x′Gax′P1−z′Asz′‐ In1−xGaxP1−zAsz (x≳x′, z≳z′) heterostructure lasers , 1980 .

[15]  N. Holonyak,et al.  Induced phonon‐sideband laser operation of large‐quantum‐well AlxGa1−xAs‐GaAs heterostructures (Lz ∼200–500 Å) , 1980 .

[16]  Karl Hess,et al.  Impact ionisation in multilayered heterojunction structures , 1980 .

[17]  N. Holonyak,et al.  Hot electrons and phonons in quantum-well AlxGa1-xAs-GaAs heterostructures , 1980 .

[18]  Karl Hess,et al.  Temperature dependence of threshold current for a quantum-well heterostructure laser , 1980 .

[19]  N. Holonyak,et al.  Phonon‐assisted recombination and stimulated emission in quantum‐well AlxGa1−xAs‐GaAs heterostructures , 1980 .

[20]  Karl Hess,et al.  Temperature dependence of threshold current for quantum‐well AlxGa1−xAs‐GaAs heterostructure laser diodes , 1980 .

[21]  S. W. Kirchoefer,et al.  Quantum-well Inp-Inl−xGaxPl−zAsz heterostructure lasers grown by liquid phase epitaxy (LPE) , 1980 .

[22]  N. Holonyak,et al.  Continuous room‐temperature multiple‐quantum‐well AlxGa1−xAs‐GaAs injection lasers grown by metalorganic chemical vapor deposition , 1979 .

[23]  K. Hess Impurity and phonon scattering in layered structures , 1979 .

[24]  N. Holonyak,et al.  Phonon-assisted recombination and stimulated emission in multiple quantum-well Mo-CVD AlxGa1-xAs-GaAs heterostructures (Lz∽50Å, E1-1' -2× h̵ωLO⪅h̵ω , 1979 .

[25]  N. Holonyak,et al.  Low‐temperature operation of multiple quantum‐well AlxGa1−xAs‐GaAs p‐n heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[26]  N. Holonyak,et al.  Tunnel injection and phonon‐assisted recombination in multiple quantum‐well AlxGa1−xAs‐GaAs p‐n heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[27]  R. Dupuis 700‐h continuous room‐temperature operation of AlxGa1−xAs‐GaAs heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[28]  N. Holonyak,et al.  Quantum-well Al x Ga 1 - x As-GaAs heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[29]  K. Petermann Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding , 1979 .

[30]  S. W. Kirchoefer,et al.  Phonon‐assisted recombination in a multiple‐quantum‐well LPE InP‐In1−xGaxP1−zAsz heterostructure laser , 1979 .

[31]  N. Holonyak,et al.  Determination of the valence‐band discontinuity of InP1−xGaxP1−zAsz (x∼0.13, z∼0.29) by quantum‐well luminescence , 1979 .

[32]  N. Holonyak,et al.  Phonon‐sideband MO‐CVD quantum‐well AlxGa1−xAs‐GaAs heterostructure laser , 1979 .

[33]  N. Holonyak,et al.  Bevel cross sectioning of ultra-thin (∼ 100 Å) III–V semiconductor layers , 1979 .

[34]  P. Dapkus,et al.  Preparation and properties of Ga 1-x Al x As-GaAs heterostructure lasers grown by metalorganic chemical vapor deposition , 1979 .

[35]  P. Dapkus,et al.  Abrupt Ga1−xAlxAs‐GaAs quantum‐well heterostructures grown by metalorganic chemical vapor deposition , 1979 .

[36]  P. D. Dapkus,et al.  Continuous 300 °K laser operation of single‐quantum‐well AlxGa1−xAs‐GaAs heterostructure diodes grown by metalorganic chemical vapor deposition , 1979 .

[37]  N. Holonyak,et al.  Bandfilling in liquid phase epitaxial InP‐In1−xGaxP1−zAsz‐InP quantum‐well heterostructure lasers , 1978 .

[38]  N. Holonyak,et al.  Bandfilling in metalorganic chemical vapor deposited AlxGa1−xAs‐GaAs‐AlxGa1−xAs quantum‐well heterostructure lasers , 1978 .

[39]  N. Holonyak,et al.  Low‐threshold continuous laser operation (300–337 °K) of multilayer MO‐CVD AlxGa1−xAs‐GaAs quantum‐well heterostructures , 1978 .

[40]  N. Holonyak,et al.  Photopumped laser operation of MO‐CVD AlxGa1−xAs near a GaAs quantum well (λ≳6200 Å, 77 °K) , 1978 .

[41]  N. Holonyak,et al.  Carrier collection in a semiconductor quantum well , 1978 .

[42]  N. Holonyak,et al.  Determination of the indirect band edge of GaAs by quantum-well bandfilling (Lz∼100Å) , 1978 .

[43]  N. Holonyak,et al.  Room‐temperature continuous operation of photopumped MO‐CVD AlxGa1−xAs‐GaAs‐AlxGa1−xAs quantum‐well lasers , 1978 .

[44]  P. Dapkus,et al.  Very low threshold Ga(1−x)AlxAs‐GaAs double‐heterostructure lasers grown by metalorganic chemical vapor deposition , 1978 .

[45]  P. Dapkus,et al.  Continuous room‐temperature operation of Ga(1−x)AlxAs‐GaAs double‐heterostructure lasers grown by metalorganic chemical vapor deposition , 1978 .

[46]  N. Holonyak,et al.  Single thin‐active‐layer visible‐spectrum In1−xGaxP1−zAsz heterostructure lasers , 1978 .

[47]  P. D. Dapkus,et al.  Room‐temperature laser operation of quantum‐well Ga(1−x)AlxAs‐GaAs laser diodes grown by metalorganic chemical vapor deposition , 1978 .

[48]  N. Holonyak,et al.  Single and multiple thin‐layer (Lz≲400 A) In1−xGaxP1−zAsz‐InP heterostructure light emitters and lasers (λ∼1.1 μm, 77 °K) , 1978 .

[49]  J. Shah Hot electrons and phonons under high intensity photoexcitation of semiconductors , 1978 .

[50]  N. Holonyak,et al.  Tunnel injection into the confined‐particle states of an In1−xGaxP1−zAsz well in InP , 1977 .

[51]  Hisashi Shichijo,et al.  Confined‐carrier luminescence of a thin In1−xGaxP1−zAsz well (x∼0.13, z∼0.29, ∼400 Å) in an InP p‐n junction , 1977 .

[52]  P. D. Dapkus,et al.  Room‐temperature operation of Ga(1−x)AlxAs/GaAs double‐heterostructure lasers grown by metalorganic chemical vapor deposition , 1977 .

[53]  G. E. Stillman,et al.  LPE In1−xGaxP1−zAsz (x∼0.12, z∼0.26) DH laser with multiple thin‐layer (<500 Å) active region , 1977 .

[54]  R. Dingle,et al.  Laser oscillation with optically pumped very thin GaAs‐AlxGa1−xAs multilayer structures and conventional double heterostructures , 1976 .

[55]  L. L. Chang,et al.  Interdiffusion between GaAs and AlAs , 1976 .

[56]  R. Dingle,et al.  Direct Observation of Superlattice Formation in a Semiconductor Heterostructure , 1975 .

[57]  W. Wiegmann,et al.  Laser oscillation from quantum states in very thin GaAs−Al0.2Ga0.8As multilayer structures , 1975 .

[58]  W. Wiegmann,et al.  Quantum States of Confined Carriers in Very Thin AlxGa1-x As-GaAs-AlxGa1-xAs Heterostructures , 1974 .

[59]  Leroy L. Chang,et al.  New Transport Phenomenon in a Semiconductor "Superlattice" , 1974 .

[60]  L. Esaki,et al.  Resonant tunneling in semiconductor double barriers , 1974 .

[61]  H. Schade,et al.  Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs–O surfaces , 1973 .

[62]  R. Logan,et al.  Optical waveguides in GaAs–AlGaAs epitaxial layers , 1973 .

[63]  M. I. Elinson,et al.  Quantum size effect and perspectives of its practical application , 1972 .

[64]  N. Holonyak,et al.  Window‐Heat Sink Sandwich for Optical Experiments: Diamond (or Sapphire)‐Semiconductor‐Indium Sandwich , 1971 .

[65]  H. M. Manasevit The Use of Metal‐Organics in the Preparation of Semiconductor Materials: III . Studies of Epitaxial III ‐ V Aluminum Compound Formation Using Trimethylaluminum , 1971 .

[66]  I. Hayashi,et al.  JUNCTION LASERS WHICH OPERATE CONTINUOUSLY AT ROOM TEMPERATURE , 1970 .

[67]  V. Lutskiǐ Quantum size effect–‐present state and perspectives of experimental investigations , 1970 .

[68]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[69]  L. W. James,et al.  Transport Properties of GaAs Obtained from Photoemission Measurements , 1969 .

[70]  G. Mahan,et al.  Phonon-Assisted Recombination of Free Excitons in Compound Semiconductors , 1968 .

[71]  F. Stern,et al.  Properties of Semiconductor Surface Inversion Layers in the Electric Quantum Limit , 1967 .

[72]  R. Fivaz Theory of layer structures , 1967 .

[73]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[74]  Frank Stern,et al.  Spontaneous and Stimulated Recombination Radiation in Semiconductors , 1964 .

[75]  Herbert Kroemer,et al.  A proposed class of hetero-junction injection lasers , 1963 .

[76]  W. E. Krag,et al.  SEMICONDUCTOR MASER OF GaAs , 1962 .

[77]  N. Holonyak,et al.  COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−xPx) JUNCTIONS , 1962 .

[78]  J. D. Kingsley,et al.  Coherent Light Emission From GaAs Junctions , 1962 .

[79]  W. Dumke,et al.  STIMULATED EMISSION OF RADIATION FROM GaAs p‐n JUNCTIONS , 1962 .

[80]  J. R. Schrieffer,et al.  Effective Carrier Mobility in Surface-Space Charge Layers , 1955 .

[81]  J. Bardeen,et al.  Infrared Absorption Spectrum of Germanium , 1954 .

[82]  M. H. Hebb Mechanism of Exciton-Enhanced Photoelectric Emission in Alkali Halides , 1951 .