High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy

Abstract In this work, extensive electrochemical impedance measurements have been conducted on a 45 cm 2 BASF Celtec P2100 high temperature PEM MEA. The fuel cell performance has been examined subject to some of the poisoning effects experienced when running on a reformate gas. The impedance is measured at different temperatures, currents, and different content of CO, CO 2 and H 2 in the anode gas. The impedance spectrum at each operating point is fitted to an equivalent circuit and an analysis to identify the different mechanisms governing the impedance is performed. The trends observed, when varying the operating conditions under pure H 2 , generally show good agreement with results from the literature. When adding CO and CO 2 to the anode gas the entire frequency spectrum is affected, and especially the measurements conducted at low temperatures and high CO concentrations reveal undesirable transient effects.

[1]  Jingwei Hu,et al.  Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI , 2006 .

[2]  Jens Oluf Jensen,et al.  Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes , 2010 .

[3]  Chang-Soo Kim,et al.  Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide , 2006 .

[4]  J. Scholta,et al.  Long Term Testing in Continuous Mode of HT‐PEMFC Based H3PO4/PBI Celtec‐P MEAs for μ‐CHP Applications , 2009 .

[5]  Alexander Wokaun,et al.  Oscillations in Gas Channels II. Unraveling the Characteristics of the Low Frequency Loop in Air-Fed PEFC Impedance Spectra , 2007 .

[6]  Mathias Schulze,et al.  Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt–Ru anodes in a membrane fuel cell (PEFC) , 2003 .

[7]  M. Nielsen,et al.  Modeling and Implementation of a 1 kW, Air Cooled HTPEM Fuel Cell in a Hybrid Electrical Vehicle , 2008 .

[8]  Ravindra Datta,et al.  Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells , 2006 .

[9]  Y. Kang,et al.  High temperature proton exchange membranes based on triazoles attached onto SBA-15 type mesoporous silica , 2010 .

[10]  B. Rambabu,et al.  Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell , 2010 .

[11]  Huamin Zhang,et al.  A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells , 2007 .

[12]  N. Wagner,et al.  Change of electrochemical impedance spectra (EIS) with time during CO-poisoning of the Pt-anode in a membrane fuel cell , 2004 .

[13]  W. Lai,et al.  Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell , 2010 .

[14]  Thomas J. Schmidt,et al.  Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode , 2008 .

[15]  Wenhua H. Zhu,et al.  PEM stack test and analysis in a power system at operational load via ac impedance , 2007 .

[16]  Yanghua Tang,et al.  Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 °C , 2007 .

[17]  H. Chu,et al.  Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells , 2007 .

[18]  S. Kær,et al.  Aalborg Universitet Experimental study and modeling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems , 2010 .

[19]  E. Schaltz,et al.  Characterisation and Modelling of a High Temperature PEM Fuel Cell Stack using Electrochemical Impedance Spectroscopy , 2009 .

[20]  S. Kær,et al.  Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell , 2009 .

[21]  Zhigang Qi,et al.  Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells , 2006 .

[22]  Adélio Mendes,et al.  Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes , 2010 .

[23]  Jari Ihonen,et al.  A rapid break-in procedure for PBI fuel cells , 2009 .

[24]  Søren Juhl Andreasen,et al.  Design and Control of High Temperature PEM Fuel Cell System , 2009 .

[25]  Joannis K. Kallitsis,et al.  Reforming methanol to electricity in a high temperature PEM fuel cell , 2009 .

[26]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[27]  Alexander Wokaun,et al.  Oscillations in gas channels. Part I. The forgotten player in impedance spectroscopy in PEFCs , 2007 .

[28]  K. Scott,et al.  A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications , 2010 .

[29]  S. Kær,et al.  400 W High Temperature PEM Fuel Cell Stack Test , 2007 .

[30]  N. M. Zagudaeva,et al.  Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test , 2009 .

[31]  K. Scott,et al.  A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature , 2008 .

[32]  T. Springer,et al.  Characterization of polymer electrolyte fuel cells using ac impedance spectroscopy , 1996 .

[33]  Huamin Zhang,et al.  Diffusion–convection/electrochemical model studies on polybenzimidazole (PBI) fuel cell based on AC impedance technique , 2008 .

[34]  Z. Qi,et al.  Low Pt loading high performance cathodes for PEM fuel cells , 2003 .

[35]  Joachim Scholta,et al.  Externally cooled high temperature polymer electrolyte membrane fuel cell stack , 2009 .

[36]  Jian Colin Sun,et al.  AC impedance technique in PEM fuel cell diagnosis—A review , 2007 .

[37]  E. Schaltz,et al.  Design of propulsion system for a fuel cell vehicle , 2007, 2007 European Conference on Power Electronics and Applications.

[38]  Søren Knudsen Kær,et al.  Dynamic Model of the High Temperature Proton Exchange Membrane Fuel Cell Stack Temperature , 2009 .

[39]  Ronghuan He,et al.  Integration of high temperature PEM fuel cells with a methanol reformer , 2005 .

[40]  Søren Knudsen Kær,et al.  Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks , 2008 .

[41]  Jingwei Hu,et al.  500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC , 2006 .

[42]  J. Scholta,et al.  Long‐Term Testing in Dynamic Mode of HT‐PEMFC H3PO4/PBI Celtec‐P Based Membrane Electrode Assemblies for Micro‐CHP Applications , 2010 .

[43]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[44]  Søren Knudsen Kær,et al.  Directly connected series coupled HTPEM fuel cell stacks to a Li-ion battery DC bus for a fuel cell electrical vehicle , 2008 .

[45]  Yi Liu,et al.  Preparation and proton conductivity of composite membranes based on sulfonated poly(phenylene oxide) and benzimidazole , 2007 .