Adaptative evaluation of image segmentation results

We present in this article a new unsupervised evaluation criterion that enables the quantification of the quality of an image segmentation result according to the type of the original image. We first briefly present a comparative study of existing unsupervised evaluation criteria. Then, we present a method for the determination of the type of the original image: uniform, mixed or textured by using a learning method (support vector machine). In the third part, we present the proposed algorithm for segmentation evaluation and the experimental results on synthetic images from a large database. Last, we conclude and present some perspectives of this work

[1]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[2]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  William A. Yasnoff,et al.  Error measures for scene segmentation , 1977, Pattern Recognit..

[5]  Hélène Laurent,et al.  Evaluating the segmentation result of a gray-level image , 2004, 2004 12th European Signal Processing Conference.

[6]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[7]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[8]  R. Haralick Image segmentation survey , 1982 .

[9]  Paola Campadelli,et al.  Quantitative evaluation of color image segmentation results , 1998, Pattern Recognit. Lett..

[10]  L. Vinet Segmentation et mise en correspondance de régions de paires d'images stéréoscopiques , 1991 .

[11]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[12]  Alexander A. Sawchuk,et al.  Supervised Textured Image Segmentation Using Feature Smoothing and Probabilistic Relaxation Techniques , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Qian Huang,et al.  Quantitative methods of evaluating image segmentation , 1995, Proceedings., International Conference on Image Processing.

[15]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  R. Zéboudj,et al.  Filtrage, seuillage automatique, contraste et contours : du pré-traitement à l'analyse d'image , 1988 .