Protein–Polymer Hybrid Amphiphiles

Biohybrid amphiphiles composed of a protein head group and a hydrophobic polymer tail self‐assemble in water in a similar way as low molecular weight surfactants. Owing to the presence of the protein, biohybrid amphiphiles, and their assemblies, however, hold the additional feature of a built‐in (bio)functionality. These compounds therefore are promising building blocks for the synthesis of functional nanometer‐sized materials. We discuss recent advances in the relatively young field of protein–polymer hybrid amphiphiles, which so far mainly involved exploratory and fundamental studies providing a conceptual basis for the development of more complex systems with interesting applications in the future.

[1]  Alan E. Rowan,et al.  From (bio)Molecules to Biohybrid Materials with the Click Chemistry Approach , 2007 .

[2]  Jan C M van Hest,et al.  Positional assembly of enzymes in polymersome nanoreactors for cascade reactions. , 2007, Angewandte Chemie.

[3]  Patrick S. Stayton,et al.  Conjugates of stimuli-responsive polymers and proteins , 2007 .

[4]  H. Maynard,et al.  Aminooxy End-Functionalized Polymers Synthesized by ATRP for Chemoselective Conjugation to Proteins , 2007 .

[5]  C. Barner‐Kowollik,et al.  Well-defined protein-polymer conjugates via in situ RAFT polymerization. , 2007, Journal of the American Chemical Society.

[6]  G. Mantovani,et al.  Formation of giant amphiphiles by post-functionalization of hydrophilic protein–polymer conjugates , 2007 .

[7]  C. Barner‐Kowollik,et al.  In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization. , 2007, Angewandte Chemie.

[8]  David A. Tirrell,et al.  Non‐Canonical Amino Acids in Protein Polymer Design , 2007 .

[9]  R. Nolte,et al.  Self-assembled architectures from biohybrid triblock copolymers. , 2007, Journal of the American Chemical Society.

[10]  R. Nolte,et al.  Aggregation behavior of giant amphiphiles prepared by cofactor reconstitution. , 2006, Chemistry.

[11]  H. Maynard,et al.  In situ preparation of protein-"smart" polymer conjugates with retention of bioactivity. , 2005, Journal of the American Chemical Society.

[12]  H. Maynard,et al.  One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP. , 2005, Chemical communications.

[13]  Jan C M van Hest,et al.  Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3 + 2] dipolar cycloaddition reaction. , 2005, Chemical communications.

[14]  H. Maynard,et al.  Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. , 2005, Journal of the American Chemical Society.

[15]  Johannes A A W Elemans,et al.  Self-assembled nanoreactors. , 2005, Chemical reviews.

[16]  E. Gil,et al.  Stimuli-reponsive polymers and their bioconjugates , 2004 .

[17]  D. Pochan,et al.  Toroidal Triblock Copolymer Assemblies , 2004, Science.

[18]  A. Hoffman,et al.  Bioconjugates of smart polymers and proteins: synthesis and applications , 2004 .

[19]  J. V. Hest,et al.  Block copolymer vesicles , 2004 .

[20]  Markus Antonietti,et al.  Vesicles and Liposomes: A Self‐Assembly Principle Beyond Lipids , 2003 .

[21]  R. Nolte,et al.  Vesicles and polymerized vesicles from thiophene-containing rod-coil block copolymers. , 2003, Angewandte Chemie.

[22]  J. M. Hannink,et al.  Giant amphiphiles by cofactor reconstitution. , 2002, Angewandte Chemie.

[23]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[24]  H. Klok,et al.  Water-soluble stimuli-responsive vesicles from peptide-based diblock copolymers. , 2002, Angewandte Chemie.

[25]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[26]  R. Nolte,et al.  Lipase polystyrene giant amphiphiles. , 2002, Journal of the American Chemical Society.

[27]  Markus Antonietti,et al.  The formation of polymer vesicles or "peptosomes" by polybutadiene-block-poly(L-glutamate)s in dilute aqueous solution. , 2002, Journal of the American Chemical Society.

[28]  J. M. Hannink,et al.  Protein-polymer hybrid amphiphiles , 2001 .

[29]  H. Klok,et al.  Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. , 2001, Advanced drug delivery reviews.

[30]  Sébastien Lecommandoux,et al.  Supramolecular Materials via Block Copolymer Self-Assembly , 2001 .

[31]  M. G. Finn,et al.  Click Chemistry: Diverse Chemical Function from a Few Good Reactions. , 2001, Angewandte Chemie.

[32]  R. Nolte,et al.  Helical superstructures from charged Poly(styrene)-Poly(isocyanodipeptide) block copolymers , 1998, Science.

[33]  E. W. Meijer,et al.  Polystyrene-Dendrimer Amphiphilic Block Copolymers with a Generation-Dependent Aggregation , 1995, Science.

[34]  S. Marčelja,et al.  Physical principles of membrane organization , 1980, Quarterly Reviews of Biophysics.

[35]  Dennis E. Discher,et al.  Polymer vesicles : Materials science: Soft surfaces , 2002 .

[36]  B. Ninham,et al.  Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers , 1976 .