Unifying Population and Landscape Ecology with Spatial Capture-recapture

Spatial heterogeneity in the environment induces variation in population demographic rates and dispersal patterns, which result in spatio-temporal variation in density and gene flow. Unfortunately, applying theory to learn about the role of spatial structure on populations has been hindered by the lack of mechanistic spatial models and inability to make precise observations of population structure. Spatial capture-recapture (SCR) represents an individual-based analytic framework for overcoming this fundamental obstacle that has limited the utility of ecological theory. SCR methods make explicit use of spatial encounter information on individuals in order to model density and other spatial aspects of animal population structure, and have been widely adopted in the last decade. We review the historical context and emerging developments in SCR models that enable the integration of explicit ecological hypotheses about landscape connectivity, movement, resource selection, and spatial variation in density, directly with individual encounter history data obtained by new technologies (e.g., camera trapping, non-invasive DNA sampling). We describe ways in which SCR methods stand to revolutionize the study of animal population ecology.

[1]  R M Nisbet,et al.  Habitat structure and population persistence in an experimental community , 2001, Nature.

[2]  D L Borchers,et al.  Spatially Explicit Maximum Likelihood Methods for Capture–Recapture Studies , 2008, Biometrics.

[3]  Mimeograph SERffiS The Use of a Robust Capture-recapture Design in Small Mammal Population Studie a Field Example with Microtus Pennsylvanicus , 2008 .

[4]  Wayne M. Getz,et al.  A framework for generating and analyzing movement paths on ecological landscapes , 2008, Proceedings of the National Academy of Sciences.

[5]  J. Andrew Royle,et al.  Spatial capture‐recapture models for search‐encounter data , 2011 .

[6]  W. Bogdanowicz,et al.  J. E. Hill, J. D. Smith, 1984: Bats: a natural history. British Museum (Natural History), London, 243 pp , 1984 .

[7]  J. Andrew Royle,et al.  Model‐based estimators of density and connectivity to inform conservation of spatially structured populations , 2017 .

[8]  David R. Anderson,et al.  Evaluation of a nested grid approach for estimating density , 1985 .

[9]  Ben C. Stevenson,et al.  A Unifying Model for Capture–Recapture and Distance Sampling Surveys of Wildlife Populations , 2015, Journal of the American Statistical Association.

[10]  B. Mcrae,et al.  ISOLATION BY RESISTANCE , 2006, Evolution; international journal of organic evolution.

[11]  J. Nichols,et al.  ESTIMATION OF TIGER DENSITIES IN INDIA USING PHOTOGRAPHIC CAPTURES AND RECAPTURES , 1998 .

[12]  Michael K. Schwartz,et al.  Integrating Motion-Detection Cameras and Hair Snags for Wolverine Identification , 2011 .

[13]  Brett T McClintock,et al.  A spatial mark--resight model augmented with telemetry data. , 2013, Ecology.

[14]  R. Gardner,et al.  Landscape Ecology in Theory and Practice , 2015, Springer New York.

[15]  J. Andrew Royle,et al.  Integrating resource selection information with spatial capture–recapture , 2012, Methods in Ecology and Evolution.

[16]  O. Ovaskainen,et al.  State-space models of individual animal movement. , 2008, Trends in ecology & evolution.

[17]  David L. Borchers,et al.  A general framework for animal density estimation from acoustic detections across a fixed microphone array , 2015 .

[18]  Murray G. Efford,et al.  Density-dependent home-range size revealed by spatially explicit capture–recapture , 2016 .

[19]  P. Turchin Quantitative analysis of movement : measuring and modeling population redistribution in animals and plants , 1998 .

[20]  M. Efford Density estimation in live‐trapping studies , 2004 .

[21]  J. Andrew Royle,et al.  Density, distribution, and genetic structure of grizzly bears in the Cabinet‐Yaak Ecosystem , 2016 .

[22]  M. Conroy,et al.  Analysis and Management of Animal Populations , 2002 .

[23]  M. A. Sawaya,et al.  A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models , 2015, PloS one.

[24]  Murray G. Efford,et al.  Bird population density estimated from acoustic signals , 2009 .

[25]  Dean L. Urban,et al.  Comparing Habitat Suitability and Connectivity Modeling Methods for Conserving Pronghorn Migrations , 2012, PloS one.

[26]  J. Ware,et al.  Random-effects models for longitudinal data. , 1982, Biometrics.

[27]  Brian J. Reich,et al.  A spatial capture‐recapture model for territorial species , 2014, 1405.1976.

[28]  Beth Gardner,et al.  Separating mortality and emigration: modelling space use, dispersal and survival with robust‐design spatial capture–recapture data , 2014 .

[29]  David L. Borchers,et al.  An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia , 2016, PloS one.

[30]  M. Efford,et al.  Compensatory heterogeneity in spatially explicit capture-recapture data. , 2014, Ecology.

[31]  David L. Borchers,et al.  Flexible density surface estimation for spatially explicit capture-recapture surveys , 2014 .

[32]  Lindsay A. Turnbull,et al.  Identification of 100 fundamental ecological questions , 2013 .

[33]  J Andrew Royle,et al.  Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies. , 2010, Ecology.

[34]  R H Macarthur,et al.  On the use of mist nets for population studies of birds. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Daniel Fortin,et al.  Considering ecological dynamics in resource selection functions. , 2010, The Journal of animal ecology.

[36]  J. Andrew Royle,et al.  Estimating true instead of apparent survival using spatial Cormack–Jolly–Seber models , 2014 .

[37]  Douglas H. Johnson THE COMPARISON OF USAGE AND AVAILABILITY MEASUREMENTS FOR EVALUATING RESOURCE PREFERENCE , 1980 .

[38]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[39]  Mark Hebblewhite,et al.  Integrating resource selection into spatial capture-recapture models for large carnivores , 2015 .

[40]  Jason Holmberg,et al.  Mark‐Recapture with Multiple, Non‐Invasive Marks , 2012, Biometrics.

[41]  Len Thomas,et al.  Estimating cetacean population density using fixed passive acoustic sensors: an example with Blainville's beaked whales. , 2009, The Journal of the Acoustical Society of America.

[42]  Gabriele Eisenhauer,et al.  Elements Of Mathematical Ecology , 2016 .

[43]  Roger Pradel,et al.  ESTIMATING SURVIVAL AND TEMPORARY EMIGRATION IN THE MULTISTATE CAPTURE–RECAPTURE FRAMEWORK , 2004 .

[44]  Navinder J. Singh,et al.  Linking Movement Ecology with Wildlife Management and Conservation , 2016, Front. Ecol. Evol..

[45]  David L. Borchers,et al.  Continuous‐time spatially explicit capture–recapture models, with an application to a jaguar camera‐trap survey , 2014 .

[46]  J. Andrew Royle,et al.  Spatial capture–recapture models allowing Markovian transience or dispersal , 2015, Population Ecology.

[47]  Eric J. Gustafson,et al.  The Effect of Landscape Heterogeneity on the Probability of Patch Colonization , 1996 .

[48]  Don W. Hayne,et al.  Calculation of Size of Home Range , 1949 .

[49]  Richard B. Chandler,et al.  Generalized spatial mark–resight models with an application to grizzly bears , 2018 .

[50]  J. Andrew Royle,et al.  Trap Configuration and Spacing Influences Parameter Estimates in Spatial Capture-Recapture Models , 2014, PloS one.

[51]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[52]  Andreas M. Ali,et al.  Acoustic monitoring in terrestrial environments using microphone arrays: applications, technological considerations and prospectus , 2011 .

[53]  J. Andrew Royle,et al.  Spatial Capture-Recapture , 2013 .

[54]  Brett T McClintock,et al.  Integrated modeling of bilateral photo-identification data in mark-recapture analyses. , 2013, Ecology.

[55]  William A Link,et al.  Uncovering a Latent Multinomial: Analysis of Mark–Recapture Data with Misidentification , 2010, Biometrics.

[56]  J. Andrew Royle,et al.  Spatially explicit models for inference about density in unmarked or partially marked populations , 2011, 1112.3250.

[57]  Richard B. Chandler,et al.  Spatially explicit integrated population models , 2014 .

[58]  Otso Ovaskainen,et al.  HABITAT-SPECIFIC MOVEMENT PARAMETERS ESTIMATED USING MARK–RECAPTURE DATA AND A DIFFUSION MODEL , 2004 .

[59]  Roger Pradel,et al.  Estimating dispersal among numerous sites using capture-recapture data. , 2014, Ecology.

[60]  Dennis L. Murray,et al.  Functional connectivity of lynx at their southern range periphery in Ontario, Canada , 2012, Landscape Ecology.

[61]  J Andrew Royle,et al.  Spatial capture--recapture models for jointly estimating population density and landscape connectivity. , 2013, Ecology.

[62]  James D. Nichols,et al.  Capture-recapture models. , 1992 .

[63]  S. Piertney Non-invasive genetic sampling and individual identification , 1999 .

[64]  Lee R. Dice,et al.  Some Census Methods for Mammals , 1938 .

[65]  J. Andrew Royle,et al.  Mixture Models for Estimating the Size of a Closed Population When Capture Rates Vary among Individuals , 2003, Biometrics.

[66]  J. Andrew Royle,et al.  Modelling non‐Euclidean movement and landscape connectivity in highly structured ecological networks , 2015 .

[67]  Olivier Gimenez,et al.  State-space modelling of data on marked individuals , 2007 .

[68]  William A. Link,et al.  Occam's shadow: Levels of analysis in evolutionary ecology--where to next? , 2002 .

[69]  G. White,et al.  Small mammal population and habitat responses to forest thinning and prescribed fire , 2006 .

[70]  Rahel Sollmann,et al.  Improving density estimates for elusive carnivores: Accounting for sex-specific detection and movements using spatial capture–recapture models for jaguars in central Brazil , 2011 .

[71]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[72]  J. Andrew Royle,et al.  Spatially-explicit models for inference about density in unmarked populations , 2011 .

[73]  J. Andrew Royle,et al.  Spatial Capture-Recapture with Partial Identity: An Application to Camera Traps , 2016, bioRxiv.

[74]  David R. Anderson,et al.  Statistical inference from capture data on closed animal populations , 1980 .

[75]  Roland Langrock,et al.  Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. , 2012, Ecology.

[76]  James D Nichols,et al.  Assessing tiger population dynamics using photographic capture-recapture sampling. , 2006, Ecology.

[77]  J. Nichols,et al.  Abundance estimation and Conservation Biology , 2004 .

[78]  J Andrew Royle,et al.  Estimating population density and connectivity of American mink using spatial capture-recapture. , 2016, Ecological applications : a publication of the Ecological Society of America.

[79]  Mark S. Boyce,et al.  Use of resource selection functions to identify conservation corridors , 2009 .

[80]  Gordon Luikart,et al.  Genetic monitoring as a promising tool for conservation and management. , 2007, Trends in ecology & evolution.

[81]  J. Andrew Royle,et al.  Program SPACECAP: software for estimating animal density using spatially explicit capture–recapture models , 2012 .

[82]  David A. W. Miller,et al.  Using Spatial Capture–Recapture to Elucidate Population Processes and Space-Use in Herpetological Studies , 2016, Journal of Herpetology.

[83]  Kevin McGarigal,et al.  Estimating landscape resistance to movement: a review , 2012, Landscape Ecology.

[84]  J. Andrew Royle Spatial Capture-recapture with Partial Identity , 2015, 1503.06873.

[85]  L. Fahrig,et al.  Connectivity is a vital element of landscape structure , 1993 .

[86]  David L. Borchers,et al.  Spatial Capture–Recapture Models , 2016 .

[87]  Murray G Efford,et al.  Population density estimated from locations of individuals on a passive detector array. , 2009, Ecology.

[88]  C. Rogers Testing optimal body mass theory: Evidence for cost of fat in wintering birds , 2015 .

[89]  C. Patrick Doncaster,et al.  Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus) , 2007 .

[90]  David R. Anderson,et al.  Evaluation of a Density Estimator Based on a Trapping Web and Distance Sampling Theory , 1985 .

[91]  J. Gamarra,et al.  Metapopulation Ecology , 2007 .

[92]  Roger Pradel,et al.  Estimating Population Growth Rate From Capture–Recapture Data in Presence of Capture Heterogeneity , 2010 .

[93]  J Andrew Royle,et al.  A hierarchical model for spatial capture-recapture data. , 2008, Ecology.

[94]  J. Nichols,et al.  ASSESSING TIGER POPULATION DYNAMICS , 2006 .