A graph-matching kernel for object categorization

This paper addresses the problem of category-level image classification. The underlying image model is a graph whose nodes correspond to a dense set of regions, and edges reflect the underlying grid structure of the image and act as springs to guarantee the geometric consistency of nearby regions during matching. A fast approximate algorithm for matching the graphs associated with two images is presented. This algorithm is used to construct a kernel appropriate for SVM-based image classification, and experiments with the Caltech 101, Caltech 256, and Scenes datasets demonstrate performance that matches or exceeds the state of the art for methods using a single type of features.

[1]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[2]  Cordelia Schmid,et al.  Local Grayvalue Invariants for Image Retrieval , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Martin J. Wainwright,et al.  Exact MAP Estimates by (Hyper)tree Agreement , 2002, NIPS.

[5]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[8]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  R. Zabih,et al.  What energy functions can be minimized via graph cuts , 2004 .

[10]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[11]  Pedro F. Felzenszwalb,et al.  Efficient belief propagation for early vision , 2004, CVPR 2004.

[12]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[13]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Pietro Perona,et al.  A sparse object category model for efficient learning and exhaustive recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[15]  Shimon Ullman,et al.  Identifying semantically equivalent object fragments , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[16]  Martial Hebert,et al.  A spectral technique for correspondence problems using pairwise constraints , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Trevor Darrell,et al.  The pyramid match kernel: discriminative classification with sets of image features , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[18]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Pietro Perona,et al.  Weakly Supervised Scale-Invariant Learning of Models for Visual Recognition , 2007, International Journal of Computer Vision.

[20]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[21]  Jitendra Malik,et al.  Shape Matching and Object Recognition , 2006, Toward Category-Level Object Recognition.

[22]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[23]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Trevor Darrell,et al.  Pyramid Match Kernels: Discriminative Classification with Sets of Image Features (version 2) , 2006 .

[25]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[26]  Václav Hlavác,et al.  Efficient MRF Deformation Model for Non-Rigid Image Matching , 2007, CVPR.

[27]  Trevor Darrell,et al.  Pyramid Match Hashing: Sub-Linear Time Indexing Over Partial Correspondences , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Sang Uk Lee,et al.  Toward Global Minimum through Combined Local Minima , 2008, ECCV.

[29]  Narendra Ahuja,et al.  Learning subcategory relevances for category recognition , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Antonio Torralba,et al.  SIFT Flow: Dense Correspondence across Different Scenes , 2008, ECCV.

[31]  Pablo Arbeláez,et al.  Recognition using regions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Sebastian Nowozin,et al.  On feature combination for multiclass object classification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[33]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[34]  Cordelia Schmid,et al.  Improving Bag-of-Features for Large Scale Image Search , 2010, International Journal of Computer Vision.

[35]  Wen Gao,et al.  Group-sensitive multiple kernel learning for object categorization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Jean Ponce,et al.  Learning mid-level features for recognition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  B. Caputo,et al.  A Performance Evaluation of Exact and Approximate Match Kernels for Object Recognition , 2010 .

[39]  Thomas S. Huang,et al.  Efficient Highly Over-Complete Sparse Coding Using a Mixture Model , 2010, ECCV.

[40]  Kristen Grauman,et al.  Asymmetric region-to-image matching for comparing images with generic object categories , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .