Effects of Pt Surface Coverage on Oxidation of Zr and Other Materials

Certain elements, including noble metals, are identified to influence corrosion behavior of many metals in high-temperature water/steam and O-2. We have previously reported effects of porous Pt coa ...

[1]  Q. Dong,et al.  A gas phase analysis technique applied to in-situ studies of gas–solid interactions , 2007 .

[2]  J. Öijerholm Ionic Transport in Metal Oxides Studied in situ by Impedance Spectroscopy and Cyclic Voltammetry , 2007 .

[3]  Clara Anghel,et al.  Modified oxygen and hydrogen transport in Zr-based oxides , 2006 .

[4]  J. Bassat,et al.  Oxygen isotopic exchange: A useful tool for characterizing oxygen conducting oxides , 2005 .

[5]  L. Jeurgens,et al.  Effect of Temperature on the Initial, Thermal Oxidiation of Zirconium , 2005 .

[6]  M. Limbäck,et al.  Influence of Pt, Fe/Ni/Cr-containing intermetallics and deuterium on the oxidation of Zr-based materials , 2005 .

[7]  M. Zheludkevich,et al.  Influence of Oxygen Dissociation on the Oxidation of Iron , 2004 .

[8]  S. Moisa,et al.  Influence of deuterium and platinum on the thermal oxidation of GaAs , 2003 .

[9]  M. Mozetič,et al.  Oxidation of AISI 304L stainless steel surface with atomic oxygen , 2002 .

[10]  Magnus Limbäck,et al.  Self-Repairing Metal Oxides , 2001 .

[11]  S. Sibener,et al.  Enhanced oxidation rate of Ni(111) by atomic oxygen , 1999 .

[12]  A. Grandjean,et al.  Metal and oxygen mobilities during Zircaloy-4 oxidation at high temperature , 1999 .

[13]  G. Wikmark,et al.  A unified model of Zircaloy BWR corrosion and hydriding mechanisms , 1999 .

[14]  T. Åkermark The Use of Oxygen Isotopic Labeling to Understand Oxidation Mechanisms , 1998 .

[15]  R. L. Cowan,et al.  Application of Noble Metal Chemical Addition Technology to an Operating BWR to Mitigate IGSCC of Reactor Internals , 1998 .

[16]  A. A. Vecher,et al.  Kinetics of zirconium oxidation by atomic and molecular oxygen at low pressures , 1997 .

[17]  P. Andresen,et al.  The effect of in-situ noble metal chemical addition on crack growth rate behavior of structural materials in 288 C water , 1996 .

[18]  M. Elmoselhi Hydrogen uptake by oxidized zirconium alloys , 1995 .

[19]  A. A. Vecher,et al.  Enhanced oxidation of nickel in atomic oxygen , 1995 .

[20]  Q. Lu,et al.  Secondary ion mass spectrometry analysis of iron oxides with known 18O/16O contents , 1994 .

[21]  H. Michel,et al.  Special kinetic and microstructural features associated with Zircaloy-4 oxidation between 520 and 620 K in the post-discharge of an argon-oxygen microwave discharge , 1994 .

[22]  B. Stauder,et al.  Structural analysis of thermal oxide layers grown on Zircaloy-4 established with the help of chemically homogeneous sputter-deposited Zr-O thin films , 1993 .

[23]  Q. Lu,et al.  Consumption and release of gas components during the reaction of iron at 300°C in a H216O/H218O/O2 gas mixture , 1993 .

[24]  A. P. Grande,et al.  Electrochemical and SIMS studies of cathodically formed hydride layers on titanium , 1990 .

[25]  F. Adams,et al.  Secondary ion emission of metal oxide species and their dependence on the fragment valence , 1983 .

[26]  A. Benninghoven,et al.  Empirical formula for the calculation of secondary ion yields from oxidized metal surfaces and metal oxides , 1977 .

[27]  U. R. Evans,et al.  The corrosion and oxidation of metals , 1976 .

[28]  K. Hauffe,et al.  Beeinflussung der Oxydationsgeschwindigkeit von Metallen mit ionenleitenden Deckschichten in einer elektrochemischen Kette , 1968 .