Doping of AlGaN alloys

Nitride-based device structures for electronic and optoelectronic applications usually incorporate layers of AlxGa1-xN, and nand p-type doping of these alloys is typically required. Experimental results indicate that doping efficiencies in AlxGa1-xN are lower than in GaN. We address the cause of these doping difficulties, based on results from first-principles densityfunctional-pseudopotential calculations. For n-type doping we will discuss doping with oxygen, the most common unintentional donor, and with silicon. For oxygen, a DX transition occurs which converts the shallow donor into a negatively charged deep level. We present experimental evidence that oxygen is a DX center in AlxGa1-xN for x>~0.3. For p-type doping, we find that compensation by nitrogen vacancies becomes increasingly important as the Al content is increased. We also find that the ionization energy of the Mg acceptor increases with alloy composition x. To address the limitations on p-type doping we have performed a comprehensive investigation of alternative acceptor impurities; none of the candidates exhibits characteristics that surpass those of Mg in all respects.

[1]  Van de Walle CG,et al.  Atomic geometry and electronic structure of native defects in GaN. , 1994, Physical review. B, Condensed matter.

[2]  B. Monemar,et al.  Time-resolved spectroscopy of Zn- and Cd-doped GaN , 1987 .

[3]  C. Walle,et al.  Theory of Point Defects and Complexes in GaN , 1995 .

[4]  M. Scheffler,et al.  Proceedings of the 23rd International Conference on THE PHYSICS OF SEMICONDUCTORS , 1996 .

[5]  R. Street,et al.  Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition , 1996 .

[6]  Isamu Akasaki,et al.  P-TYPE CONDUCTION IN MG-DOPED GAN AND AL0.08GA0.92N GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1994 .

[7]  Oliver Brandt,et al.  High p‐type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant , 1996 .

[8]  Briggs,et al.  Native defects in gallium nitride. , 1995, Physical review. B, Condensed matter.

[9]  H. Morkoç,et al.  NEAR ULTRAVIOLET LUMINESCENCE OF BE DOPED GAN GROWN BY REACTIVE MOLECULAR BEAM EPITAXY USING AMMONIA , 1996 .

[10]  E. Haller,et al.  Persistent photoconductivity in n-type GaN , 1997 .

[11]  Takashi Mukai,et al.  Hole Compensation Mechanism of P-Type GaN Films , 1992 .

[12]  S. Mahajan,et al.  Theory of magnetic field generation by relativistically strong laser radiation , 1997 .

[13]  R. Evershed,et al.  Mat Res Soc Symp Proc , 1995 .

[14]  C. Walle,et al.  Tight-Binding Initialization for Generating High-Quality Initial Wave Functions: Application to Defects and Impurities in GaN , 1995 .

[15]  M. Scheffler,et al.  Simultaneous calculation of the equilibrium atomic structure and its electronic ground state using density-functional theory , 1994 .

[16]  Masaaki Onomura,et al.  Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD , 1998 .

[17]  Michael Kunzer,et al.  Nature of the 2.8 eV photoluminescence band in Mg doped GaN , 1998 .

[18]  H. Amano,et al.  Thermal ionization energy of Si and Mg in AlGaN , 1998 .

[19]  Hadis Morkoç,et al.  Nature of Mg impurities in GaN , 1996 .

[20]  R. Nieminen,et al.  Ab initio study of oxygen point defects in GaAs, GaN, and AlN. , 1996, Physical review. B, Condensed matter.

[21]  M. Gershenzon,et al.  Ultraviolet photoluminescence from undoped and zn doped AlxGa1−xN with x between 0 and 0.75 , 1991 .

[22]  R. Davis,et al.  Optical activation of Be implanted into GaN , 1998 .

[23]  Risto M. Nieminen,et al.  Point-defect complexes and broadband luminescence in GaN and AlN , 1997 .

[24]  Jaime A. Freitas,et al.  On the origin of electrically active defects in AlGaN alloys grown by organometallic vapor phase epitaxy , 1996 .

[25]  Chris G. Van de Walle,et al.  Doping of AlxGa1−xN , 1998 .

[26]  L. Romano,et al.  Thickness Dependence of Electronic Properties of GaN Epi-layers , 1996 .

[27]  F. Calle,et al.  Luminescence of Be-doped GaN layers grown by molecular beam epitaxy on Si (111). , 1998 .

[28]  E. Monroy,et al.  Analysis of the Visible and UV Electroluminescence in Homojunction GaN LED's , 1998 .

[29]  Van de Walle CG,et al.  Hydrogen in GaN: Novel aspects of a common impurity. , 1995, Physical review letters.

[30]  E. Haller,et al.  PRESSURE INDUCED DEEP GAP STATE OF OXYGEN IN GAN , 1997 .

[31]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[32]  Jörg Neugebauer,et al.  Role of hydrogen in doping of GaN , 1996 .

[33]  Michael Kneissl,et al.  Metastability of Oxygen Donors in AlGaN , 1998 .

[34]  L. Romano,et al.  Hall-effect analysis of GaN films grown by hydride vapor phase epitaxy , 1998 .

[35]  Suski,et al.  Towards the identification of the dominant donor in GaN. , 1995, Physical review letters.

[36]  Chris G. Van de Walle,et al.  INTERACTIONS OF HYDROGEN WITH NATIVE DEFECTS IN GAN , 1997 .

[37]  J. Zolper,et al.  Hydrogen passivation of Ca acceptors in GaN , 1996 .

[38]  D. Greve,et al.  Properties of Si donors and persistent photoconductivity in AlGaN , 1998 .

[39]  David C. Look,et al.  Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements , 1997 .

[40]  I. Akasaki,et al.  Epitaxial Growth and Properties of Al x Ga1 − x N by MOVPE , 1986 .

[41]  O. Brandt,et al.  Doping of group III nitrides , 1998 .

[42]  J. Collet Solid-State Electronics , 1963, Nature.

[43]  R. Davis,et al.  Growth, Doping and Characterization of AlxGa1−xN Thin Film Alloys on 6H-SiC(0001) Substrates , 1996 .

[44]  G. Yi,et al.  Compensation of n‐type GaN , 1996 .

[45]  S. Haffouz,et al.  Luminescence and reflectivity studies of undoped, n- and p-doped GaN on (0001) sapphire , 1997 .

[46]  C. Kuo,et al.  ACTIVATION ENERGIES OF SI DONORS IN GAN , 1996 .

[47]  M. Asif Khan,et al.  Metastability and persistent photoconductivity in Mg‐doped p‐type GaN , 1996 .

[48]  R. Davis,et al.  Growth and Doping of Al x Ga 1−x N Deposited Directly on α(6H)-SiC(0001) Substrates via Organometallic Vapor Phase Epitaxy , 1995 .

[49]  V. Riede,et al.  On the origin of free carriers in high‐conducting n‐GaN , 1983 .

[50]  V. Walle,et al.  DX-center formation in wurtzite and zinc-blende Al x Ga 1-x N , 1998 .

[51]  Matthias Scheffler,et al.  Density-functional theory calculations for poly-atomic systems: electronic structure, static and elastic properties and ab initio molecular dynamics , 1997 .

[52]  C. Lushchik International Conference on the Physics of Semiconductors , 1960 .

[53]  Shirley,et al.  Quasiparticle band structure of AlN and GaN. , 1993, Physical review. B, Condensed matter.