Early Cognitive Computer Vision

Abstract This chapter outlines computational models for the first stages of visual cognition. For both biological and technical systems, we are examining which architectural components are necessary in such systems, and how experience can be acquired and used to steer perceptual interpretation. Since human perception has evolved to interpret the structure of the world around us, a necessary boundary condition of the vision system must be the common statistics of natural images. Searching for generality, it is observed that a limited set of physical laws of image formation will impress common statistics on the images offered to the eye as sensory input. The physical laws are largely scene and domain independent, as they cover the universally applicable laws of light reflectance from materials. The chapter focuses on the physical and statistical constrains in the sensory input, and how this can be exploited to construct cognitive vision systems. Visual cognition may be based on a weak description of the important features in the scene, as long as mutual correspondence between observation and objects in the world is maintained. For such a computational theory, the first few steps will be outlined: visual measurement, invariant representation, and focal attention.

[1]  J. Koenderink,et al.  Cartesian differential invariants in scale-space , 1993, Journal of Mathematical Imaging and Vision.

[2]  J. H. Hateren,et al.  Independent component filters of natural images compared with simple cells in primary visual cortex , 1998 .

[3]  Carsten Steger,et al.  An Unbiased Detector of Curvilinear Structures , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Arnold W. M. Smeulders,et al.  A Minimum Cost Approach for Segmenting Networks of Lines , 2001, International Journal of Computer Vision.

[6]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[8]  Max A. Viergever,et al.  Invertible Orientation Bundles on 2D Scalar Images , 1997, Scale-Space.

[9]  Arnold W. M. Smeulders,et al.  Color Invariant Edge Detection , 1999, Scale-Space.

[10]  Kristin J. Dana,et al.  Texture histograms as a function of irradiation and viewing direction , 1999, International Journal of Computer Vision.

[11]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[12]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing , 2004, Concurr. Pract. Exp..

[13]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[14]  W. K. Brown A theory of sequential fragmentation and its astronomical applications , 1989 .

[15]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[16]  Donald Michie,et al.  Machine intelligence 11 , 1988 .

[17]  Dennis Koelma,et al.  A software architecture for user transparent parallel image processing , 2002, Parallel Comput..

[18]  Joost van de Weijer,et al.  Fast Anisotropic Gauss Filtering , 2002, ECCV.

[19]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[20]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[21]  Wilson S. Geisler,et al.  Multichannel Texture Analysis Using Localized Spatial Filters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  S. Rigdon Testing goodness-of-fit for the power law process , 1989 .

[23]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[24]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Dale Purves,et al.  A statistical explanation of visual space , 2003, Nature Neuroscience.

[26]  Shree K. Nayar,et al.  Histogram model for 3D textures , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[27]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[28]  W. K. Brown,et al.  Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions , 1995 .

[29]  Arnold W. M. Smeulders,et al.  Color and Scale: The Spatial Structure of Color Images , 2000, ECCV.

[30]  Amit Jain,et al.  A multiscale representation including opponent color features for texture recognition , 1998, IEEE Trans. Image Process..

[31]  D. Foster,et al.  Relational colour constancy from invariant cone-excitation ratios , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[32]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[33]  Eero P. Simoncelli Modeling the joint statistics of images in the wavelet domain , 1999, Optics & Photonics.

[34]  Andrea J. van Doorn,et al.  Illuminance texture due to surface mesostructure , 1996 .

[35]  Arnold W. M. Smeulders,et al.  Fragmentation in the vision of scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[36]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  D J Field,et al.  Relations between the statistics of natural images and the response properties of cortical cells. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[38]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Guillermo Sapiro,et al.  Color and Illuminant Voting , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[42]  D. B. Judd,et al.  Color in Business, Science, and Industry , 1953 .

[43]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[45]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[46]  Luc Van Gool,et al.  Vision and Lie's approach to invariance , 1995, Image Vis. Comput..

[47]  Ewald Hering Outlines of a theory of the light sense , 1964 .

[48]  Shree K. Nayar,et al.  Bidirectional Reflection Distribution Function of Thoroughly Pitted Surfaces , 1999, International Journal of Computer Vision.

[49]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[50]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[51]  W. Weibull A Statistical Distribution Function of Wide Applicability , 1951 .

[52]  Pietro Perona Steerable-scalable kernels for edge detection and junction analysis , 1992, Image Vis. Comput..

[53]  David Mumford,et al.  Occlusion Models for Natural Images: A Statistical Study of a Scale-Invariant Dead Leaves Model , 2004, International Journal of Computer Vision.

[54]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.

[55]  J. Koenderink,et al.  Receptive field families , 1990, Biological Cybernetics.

[56]  F. R. A. Hopgood,et al.  Machine Intelligence 6 , 1972, The Mathematical Gazette.

[57]  A. Smeulders,et al.  A Physical Explanation for Natural Image Statistics , 2002 .

[58]  L. V. Vliet,et al.  Improved Orientation Selectivity for Orientation Estimation , 1997 .

[59]  Brian V. Funt,et al.  Color Constant Color Indexing , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[60]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[61]  Luc Florack,et al.  Image Structure , 1997, Computational Imaging and Vision.

[62]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[63]  Alex Pentland Linear shape from shading , 2004, International Journal of Computer Vision.

[64]  Arnold W. M. Smeulders,et al.  Color constancy from physical principles , 2003, Pattern Recognit. Lett..

[65]  Thomas S. Huang,et al.  Image processing , 1971 .

[66]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[67]  Dennis Koelma,et al.  User transparency: a fully sequential programming model for efficient data parallel image processing: Research Articles , 2004 .

[68]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[69]  Jean-Michel Jolion,et al.  Images and Benford's Law , 2001, Journal of Mathematical Imaging and Vision.

[70]  Terrence J. Sejnowski,et al.  The “independent components” of natural scenes are edge filters , 1997, Vision Research.

[71]  Anuj Srivastava,et al.  Universal Analytical Forms for Modeling Image Probabilities , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  E. Land The retinex theory of color vision. , 1977, Scientific American.

[73]  Theo Gevers,et al.  Classifying color edges in video into shadow-geometry, highlight, or material transitions , 2003, IEEE Trans. Multim..