Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes

[1]  Kun Fu,et al.  Negating interfacial impedance in garnet-based solid-state Li metal batteries. , 2017, Nature materials.

[2]  Hong‐Jie Peng,et al.  Scaled-up fabrication of porous-graphene-modified separators for high-capacity lithium–sulfur batteries , 2017 .

[3]  Hui Wu,et al.  High performance lithium metal anode: Progress and prospects , 2017 .

[4]  Chong Yan,et al.  Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries , 2017 .

[5]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[6]  Xin-Bing Cheng,et al.  Advanced Micro/Nanostructures for Lithium Metal Anodes , 2017, Advanced science.

[7]  Xin-Bing Cheng,et al.  Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries , 2017 .

[8]  Ji‐Guang Zhang,et al.  Li Metal Anodes and Rechargeable Lithium Metal Batteries. Springer Series in Materials Science , 2017 .

[9]  Ya‐Xia Yin,et al.  Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries. , 2016, Journal of the American Chemical Society.

[10]  Dingchang Lin,et al.  Stabilizing Lithium Metal Anodes by Uniform Li-Ion Flux Distribution in Nanochannel Confinement. , 2016, Journal of the American Chemical Society.

[11]  Xin-Bing Cheng,et al.  Nanostructured energy materials for electrochemical energy conversion and storage: A review , 2016 .

[12]  Feng Wu,et al.  The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons , 2016 .

[13]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[14]  Xin-Bing Cheng,et al.  Lithium metal protection through in-situ formed solid electrolyte interphase in lithium-sulfur batteries: The role of polysulfides on lithium anode , 2016 .

[15]  K. Yuan,et al.  Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. , 2016, ACS applied materials & interfaces.

[16]  Steven D. Lacey,et al.  Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. , 2016, Journal of the American Chemical Society.

[17]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[18]  Chongwu Zhou,et al.  A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life , 2016, Nano Research.

[19]  Yi Cui,et al.  Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries , 2016 .

[20]  J. Janek,et al.  The critical role of lithium nitrate in the gas evolution of lithium–sulfur batteries , 2016 .

[21]  A. Dolocan,et al.  K+ Reduces Lithium Dendrite Growth by Forming a Thin, Less-Resistive Solid Electrolyte Interphase , 2016 .

[22]  Shaofei Wang,et al.  Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte. , 2016, Journal of the American Chemical Society.

[23]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[24]  A. Bhatt,et al.  Stabilizing lithium metal using ionic liquids for long-lived batteries , 2016, Nature Communications.

[25]  Jin Ge,et al.  Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. , 2016, Nano letters.

[26]  M. Oschatz,et al.  Carbon Materials for Lithium Sulfur Batteries-Ten Critical Questions. , 2016, Chemistry.

[27]  Rui Zhang,et al.  Li2S5-based ternary-salt electrolyte for robust lithium metal anode , 2016 .

[28]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[29]  Xin-Bing Cheng,et al.  Dendrite‐Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries , 2016, Advanced materials.

[30]  Xin-Bing Cheng,et al.  Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth , 2016, Advanced materials.

[31]  Ya‐Xia Yin,et al.  An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes , 2016, Advanced materials.

[32]  Hyun-Wook Lee,et al.  Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth , 2016, Nature Energy.

[33]  Zachary D. Hood,et al.  Li2OHCl Crystalline Electrolyte for Stable Metallic Lithium Anodes. , 2016, Journal of the American Chemical Society.

[34]  Rui Zhang,et al.  A Review of Solid Electrolyte Interphases on Lithium Metal Anode , 2015, Advanced science.

[35]  Jiaqi Huang,et al.  Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and prospects , 2015 .

[36]  J. Goodenough Energy storage materials: A perspective , 2015 .

[37]  Ya‐Xia Yin,et al.  Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes , 2015, Nature Communications.

[38]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[39]  A. Pearse,et al.  Atomic Layer Deposition of the Solid Electrolyte LiPON , 2015 .

[40]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[41]  Rui Zhang,et al.  Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries. , 2015, ACS nano.

[42]  Guangyuan Zheng,et al.  Polymer nanofiber-guided uniform lithium deposition for battery electrodes. , 2015, Nano letters.

[43]  J. Goodenough,et al.  Superior Conductive Solid-like Electrolytes: Nanoconfining Liquids within the Hollow Structures. , 2015, Nano letters.

[44]  A. Manthiram,et al.  Lithium–Sulfur Batteries: Progress and Prospects , 2015, Advanced materials.

[45]  O. Borodin,et al.  High rate and stable cycling of lithium metal anode , 2015, Nature Communications.

[46]  Myung-Hyun Ryou,et al.  Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating , 2015 .

[47]  Terence J. Lozano,et al.  Failure Mechanism for Fast‐Charged Lithium Metal Batteries with Liquid Electrolytes , 2015 .

[48]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[49]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[50]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[51]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[52]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[53]  Jun Liu,et al.  Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. , 2013, Journal of the American Chemical Society.

[54]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[55]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[56]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[57]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[58]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[59]  Jiaqi Huang,et al.  The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection , 2017 .

[60]  Bin Zhu,et al.  Poly(dimethylsiloxane) Thin Film as a Stable Interfacial Layer for High‐Performance Lithium‐Metal Battery Anodes , 2017, Advanced materials.