The need for large‐scale distribution data to estimate regional changes in species richness under future climate change

Species distribution models built with geographically restricted data often fail to capture the full range of conditions experienced by species across their entire distribution area. Using such models to predict distribution shifts under future environmental change may, therefore, produce biased projections. However, restricted‐scale models have the potential to include a larger sample of taxa for which distribution data are available and to provide finer‐resolution projections that are better applied to conservation planning than the forecasts of broad‐scale models. We examine the circumstances under which the projected shifts in species richness patterns derived from restricted‐scale and broad‐scale models are most likely to be similar.

[1]  L. Johnson,et al.  Phenotypic distribution models corroborate species distribution models: A shift in the role and prevalence of a dominant prairie grass in response to climate change , 2017, Global change biology.

[2]  Steve Kelling,et al.  Using open access observational data for conservation action: A case study for birds , 2017 .

[3]  Dana H. Ikeda,et al.  Genetically informed ecological niche models improve climate change predictions , 2017, Global change biology.

[4]  Renee A. Catullo,et al.  Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. , 2016, Ecology letters.

[5]  G. Pe’er,et al.  The status and distribution of Mediterranean butterflies , 2016 .

[6]  J. Settele,et al.  Climate change impacts on pollination , 2016, Nature Plants.

[7]  Wolfgang Cramer,et al.  Biodiversity scenarios neglect future land‐use changes , 2016, Global change biology.

[8]  H. Van Dyck,et al.  A database on the distribution of butterflies (Lepidoptera) in northern Belgium (Flanders and the Brussels Capital Region) , 2016, ZooKeys.

[9]  Wilfried Thuiller,et al.  Cross-scale integration of knowledge for predicting species ranges: a metamodeling framework. , 2016, Global ecology and biogeography : a journal of macroecology.

[10]  A. Regos,et al.  Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios , 2016 .

[11]  P. Fernández,et al.  Living on the edge in species distribution models: The unexpected presence of three species of butterflies in a protected area in southern Spain , 2015 .

[12]  N. Gotelli,et al.  Climate change, genetic markers and species distribution modelling , 2015 .

[13]  Ben Collen,et al.  The use of opportunistic data for IUCN Red List assessments , 2015 .

[14]  Douglas W. Yu,et al.  The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts , 2014, Ecology and Evolution.

[15]  W. Jetz,et al.  A 40‐year, continent‐wide, multispecies assessment of relevant climate predictors for species distribution modelling , 2014 .

[16]  Javier Otegui,et al.  The GBIF Integrated Publishing Toolkit: Facilitating the Efficient Publishing of Biodiversity Data on the Internet , 2014, PloS one.

[17]  Florian Wetzel,et al.  The need for an integrated biodiversity policy support process – Building the European contribution to a global Biodiversity Observation Network (EU BON) , 2014 .

[18]  Miska Luoto,et al.  Testing species distribution models across space and time: high latitude butterflies and recent warming , 2013 .

[19]  Frédéric Jiguet,et al.  Observed and predicted effects of climate change on species abundance in protected areas , 2013 .

[20]  Brendan A. Wintle,et al.  Predicting species distributions for conservation decisions , 2013, Ecology letters.

[21]  J. Franklin Species distribution models in conservation biogeography: developments and challenges , 2013 .

[22]  Prue F. E. Addison,et al.  Practical solutions for making models indispensable in conservation decision‐making , 2013 .

[23]  Tatsuya Amano,et al.  Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security , 2013, Proceedings of the Royal Society B: Biological Sciences.

[24]  J. Franklin,et al.  Modeling plant species distributions under future climates: how fine scale do climate projections need to be? , 2013, Global change biology.

[25]  W. Jetz,et al.  Downscaling of species distribution models: 
a hierarchical approach , 2013 .

[26]  F. Altermatt Temperature‐related shifts in butterfly phenology depend on the habitat , 2012 .

[27]  M. Scoble Distribution Atlas of Butterflies in Europe , 2012 .

[28]  P. Leadley,et al.  Impacts of climate change on the future of biodiversity. , 2012, Ecology letters.

[29]  F. Jiguet,et al.  Differences in the climatic debts of birds and butterflies at a continental scale , 2012 .

[30]  Bradford A. Hawkins,et al.  Eight (and a half) deadly sins of spatial analysis , 2012 .

[31]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[32]  J. Biesmeijer,et al.  Developing European conservation and mitigation tools for pollination services: approaches of the STEP (Status and Trends of European Pollinators) project , 2011 .

[33]  J. Lobo,et al.  Species distribution models that do not incorporate global data misrepresent potential distributions: a case study using Iberian diving beetles , 2011 .

[34]  Atte Moilanen,et al.  Securing the conservation of biodiversity across administrative levels and spatial, temporal, and ecological scales - Research needs and approaches of the SCALES project , 2010 .

[35]  F. Jiguet,et al.  How much do we overestimate future local extinction rates when restricting the range of occurrence data in climate suitability models , 2010 .

[36]  A. Roques,et al.  Direct impacts of recent climate warming on insect populations. , 2010, Integrative zoology.

[37]  R. Whittaker,et al.  Beyond scarcity: citizen science programmes as useful tools for conservation biogeography , 2010 .

[38]  J. Settele,et al.  Assessing the vulnerability of European butterflies to climate change using multiple criteria , 2010, Biodiversity and Conservation.

[39]  M. Luoto,et al.  Predicted insect diversity declines under climate change in an already impoverished region , 2010, Journal of Insect Conservation.

[40]  N. Sanders,et al.  Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity , 2010, Proceedings of the National Academy of Sciences.

[41]  M. Zappa,et al.  Climate change and plant distribution: local models predict high‐elevation persistence , 2009 .

[42]  M. Araújo,et al.  BIOMOD – a platform for ensemble forecasting of species distributions , 2009 .

[43]  W. Hargrove,et al.  The projection of species distribution models and the problem of non-analog climate , 2009, Biodiversity and Conservation.

[44]  J. Clobert,et al.  Advantages of Volunteer‐Based Biodiversity Monitoring in Europe , 2009, Conservation biology : the journal of the Society for Conservation Biology.

[45]  M. Luoto,et al.  Species traits explain recent range shifts of Finnish butterflies , 2009 .

[46]  J. Hanspach,et al.  Climatic Risk Atlas of European Butterflies , 2008 .

[47]  M. Luoto,et al.  Disregarding topographical heterogeneity biases species turnover assessments based on bioclimatic models , 2008 .

[48]  Robert J. Wilson,et al.  An elevational shift in butterfly species richness and composition accompanying recent climate change , 2007 .

[49]  Jorge M. Lobo,et al.  Identifying recorder-induced geographic bias in an Iberian butterfly database , 2006 .

[50]  C. Parmesan Ecological and Evolutionary Responses to Recent Climate Change , 2006 .

[51]  M. Luoto,et al.  Determinants of the biogeographical distribution of butterflies in boreal regions , 2006 .

[52]  D. Roy,et al.  The distributions of a wide range of taxonomic groups are expanding polewards , 2006 .

[53]  E. García-Barros,et al.  Distribución e intensidad de los estudios faunísticos sobre mariposas diurnas en la Península Ibérica e islas Baleares (Lepidoptera, Papilionoidea y Hesperioidea) , 2005 .

[54]  Charles X. Ling,et al.  Using AUC and accuracy in evaluating learning algorithms , 2005, IEEE Transactions on Knowledge and Data Engineering.

[55]  W. Thuiller Patterns and uncertainties of species' range shifts under climate change , 2004 .

[56]  A. Kinzig,et al.  Biodiversity conservation: Climate change and extinction risk , 2004, Nature.

[57]  S. Lavorel,et al.  Effects of restricting environmental range of data to project current and future species distributions , 2004 .

[58]  O. Phillips,et al.  Extinction risk from climate change , 2004, Nature.

[59]  K. Saarinen,et al.  Population trends of Finnish butterflies (Lepidoptera: Hesperioidea, Papilionoidea) in 1991–2000 , 2003, Biodiversity & Conservation.

[60]  Z. Fric,et al.  Uphill shifts in distribution of butterflies in the Czech Republic: effects of changing climate detected on a regional scale , 2003 .

[61]  T. Dawson,et al.  Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? , 2003 .

[62]  J. K. Hill,et al.  Responses of butterflies to twentieth century climate warming: implications for future ranges , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[63]  M. Hulme,et al.  A high-resolution data set of surface climate over global land areas , 2002 .

[64]  Hans Van Dyck,et al.  Butterfly diversity loss in Flanders (north Belgium): Europe's worst case scenario? , 2001 .

[65]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[66]  R. Tibshirani,et al.  Generalized Additive Models: Some Applications , 1987 .

[67]  C Holden,et al.  Deaf nurse loses in supreme court plea. , 1979, Science.

[68]  Marc Macias-Fauria,et al.  The devil is in the detail: unstable response functions in species distribution models challenge bulk ensemble modelling , 2016 .

[69]  Marisa C. W. Lim,et al.  Citizen-science data provides new insight into annual and seasonal variation in migration patterns , 2015 .

[70]  D. Bonte,et al.  The lost generation hypothesis: could climate change drive ectotherms into a developmental trap ? , 2015 .

[71]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[72]  Hannu Saarenmaa,et al.  Improved access to integrated biodiversity data for science , practice , and policy-the European Biodiversity Observation Network ( EU BON ) , 2014 .

[73]  T. Carter,et al.  Scenarios as a tool for large-scale ecological research: experiences and legacy of the ALARM project , 2012 .

[74]  T. Hickler,et al.  Increasing range mismatching of interacting species under global change is related to their ecological characteristics , 2012 .

[75]  M. A N D A,et al.  Spatial scale affects bioclimate model projections of climate change impacts on mountain plants , 2008 .

[76]  Paul H. Williams,et al.  Downscaling European species atlas distributions to a finer resolution: implications for conservation planning , 2005 .

[77]  Marco Vighi,et al.  ALARM: Assessing LArge-scale environmental Risks for biodiversity with tested Methods , 2005 .

[78]  T. D. Mitchell,et al.  A comprehensive set of high-resolution grids of monthly climate for Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100). , 2004 .

[79]  Kevin J. Gaston,et al.  The structure and dynamics of geographic ranges , 2003 .

[80]  L. Holdridge Life zone ecology. , 1967 .