Exploring the role of graph spectra in graph coloring algorithm performance

This paper considers the challenge of recognizing how the properties of a graph determine the performance of graph coloring algorithms. In particular, we examine how spectral properties of the graph make the graph coloring task easy or hard. We address the question of when an exact algorithm is likely to provide a solution in a reasonable computation time, when we are better off using a quick heuristic, and how the properties of the graph influence algorithm performance. A new methodology is introduced to visualize a collection of graphs in an instance space defined by their properties, with an optimal feature selection approach included to ensure that the instance space preserves the topology of an algorithm performance metric. In this instance space we can reveal how different algorithms perform across a variety of instance classes with various properties. We demonstrate the methodology using a sophisticated branch and bound exact algorithm, and the faster heuristic approaches of integer rounding of a linear programming relaxation of the graph coloring formulation, as well as a greedy degree-saturation heuristic. Our results demonstrate that spectral properties of the graph instances can provide useful descriptions of when each of these algorithms will provide the best solution for a given computational effort.

[1]  Charles H. Reilly,et al.  The Effects of Coefficient Correlation Structure in Two-Dimensional Knapsack Problems on Solution Procedure Performance , 2000 .

[2]  I. Jolliffe Principal Component Analysis , 2002 .

[3]  Carlos Soares,et al.  Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results , 2003, Machine Learning.

[4]  Kevin Leyton-Brown,et al.  : The Design and Analysis of an Algorithm Portfolio for SAT , 2007, CP.

[5]  Patric R. J. Östergård,et al.  A fast algorithm for the maximum clique problem , 2002, Discret. Appl. Math..

[6]  Kate Smith-Miles,et al.  On learning algorithm selection for classification , 2006, Appl. Soft Comput..

[7]  Xiaozhe Wang,et al.  Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series , 2009, Neurocomputing.

[8]  Kate Smith-Miles,et al.  Predicting Metaheuristic Performance on Graph Coloring Problems Using Data Mining , 2013, Hybrid Metaheuristics.

[9]  Nicolas Chapados,et al.  Extensions to Metric-Based Model Selection , 2003, J. Mach. Learn. Res..

[10]  Jin-Kao Hao,et al.  Scatter Search for Graph Coloring , 2001, Artificial Evolution.

[11]  David R. Wood,et al.  An algorithm for finding a maximum clique in a graph , 1997, Oper. Res. Lett..

[12]  Naren Ramakrishnan,et al.  GAUSS: an online algorithm selection system for numerical quadrature , 2002 .

[13]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[14]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[15]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[16]  A. Vázquez,et al.  Network clustering coefficient without degree-correlation biases. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  David H. Wolpert,et al.  What makes an optimization problem hard? , 1995, Complex..

[18]  Pierre Hansen,et al.  Set covering and packing formulations of graph coloring: Algorithms and first polyhedral results , 2005, Discret. Optim..

[19]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[20]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[21]  Robin J. Wilson,et al.  An Atlas of Graphs , 1999 .

[22]  T. Stützle,et al.  An application of Iterated Local Search to the Graph Coloring Problem , 2007 .

[23]  Yoav Shoham,et al.  A portfolio approach to algorithm select , 2003, IJCAI 2003.

[24]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[25]  Alain Hertz,et al.  Using tabu search techniques for graph coloring , 1987, Computing.

[26]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[27]  Vassilis Zissimopoulos,et al.  On the Classification of NP-complete Problems in Terms of Their Correlation Coefficient , 2000, Discret. Appl. Math..

[28]  Ross J. W. James,et al.  A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance , 2009, LION.

[29]  Nicolas Zufferey,et al.  A graph coloring heuristic using partial solutions and a reactive tabu scheme , 2008, Comput. Oper. Res..

[30]  Padraig Cunningham,et al.  Diversity in Ensemble Feature Selection , 2003 .

[31]  Kate Smith-Miles,et al.  Generalising Algorithm Performance in Instance Space: A Timetabling Case Study , 2011, LION.

[32]  P. Pardalos,et al.  The Graph Coloring Problem: A Bibliographic Survey , 1998 .

[33]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[34]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[35]  Federico Malucelli,et al.  A simple branching scheme for vertex coloring problems , 2012, Discret. Appl. Math..

[36]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[37]  D. de Werra,et al.  An introduction to timetabling , 1985 .

[38]  John R. Rice,et al.  A knowledge discovery methodology for the performance evaluation of scientific software , 2000, Neural Parallel Sci. Comput..

[39]  Ricardo Vilalta,et al.  A Perspective View and Survey of Meta-Learning , 2002, Artificial Intelligence Review.

[40]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[41]  N. Biggs Algebraic Graph Theory , 1974 .

[42]  Kari Torkkola,et al.  Feature Extraction by Non-Parametric Mutual Information Maximization , 2003, J. Mach. Learn. Res..

[43]  Joseph C. Culberson,et al.  On the Futility of Blind Search: An Algorithmic View of No Free Lunch , 1998, Evolutionary Computation.

[44]  Jano I. van Hemert,et al.  Discovering the suitability of optimisation algorithms by learning from evolved instances , 2011, Annals of Mathematics and Artificial Intelligence.

[45]  David W. Corne,et al.  Optimisation and Generalisation: Footprints in Instance Space , 2010, PPSN.

[46]  Teresa Bernarda Ludermir,et al.  Meta-learning approaches to selecting time series models , 2004, Neurocomputing.

[47]  Naren Ramakrishnan,et al.  PYTHIA-II: a knowledge/database system for managing performance data and recommending scientific software , 2000, TOMS.

[48]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[49]  Kate Smith-Miles,et al.  Measuring algorithm footprints in instance space , 2012, 2012 IEEE Congress on Evolutionary Computation.

[50]  Kate Smith-Miles,et al.  Measuring instance difficulty for combinatorial optimization problems , 2012, Comput. Oper. Res..

[51]  Hadrien Mélot,et al.  House of Graphs: A database of interesting graphs , 2012, Discret. Appl. Math..

[52]  Naren Ramakrishnan,et al.  MyPYTHIA: a recommendation portal for scientific software and services , 2002, Concurr. Comput. Pract. Exp..

[53]  Kate Smith-Miles,et al.  Towards insightful algorithm selection for optimisation using meta-learning concepts , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[54]  Sanja Petrovic,et al.  A graph-based hyper-heuristic for educational timetabling problems , 2007, Eur. J. Oper. Res..

[55]  Charles Fleurent,et al.  Genetic and hybrid algorithms for graph coloring , 1996, Ann. Oper. Res..

[56]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[57]  R. Balakrishnan The energy of a graph , 2004 .

[58]  Patrick De Causmaecker,et al.  An algorithm selection approach for nurse rostering , 2011 .

[59]  A. Hartmann Phase Transitions in Combinatorial Optimization Problems - Basics, Algorithms and Statistical Mechanics , 2005 .

[60]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[61]  Hadrien Mélot,et al.  Facet defining inequalities among graph invariants: The system GraPHedron , 2008, Discret. Appl. Math..

[62]  James R. Evans,et al.  Heuristic “Optimization”: Why, When, and How to Use It , 1981 .

[63]  Toby Walsh,et al.  The TSP Phase Transition , 1996, Artif. Intell..

[64]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[65]  Alain Hertz,et al.  A survey of local search methods for graph coloring , 2004, Comput. Oper. Res..

[66]  Kevin Leyton-Brown,et al.  SATzilla: Portfolio-based Algorithm Selection for SAT , 2008, J. Artif. Intell. Res..