Velocity Error for Coherent Doppler Lidar with Pulse Accumulation

Abstract The random estimation or instrument error of coherent Doppler lidar velocity estimates with pulse accumulation (multiple lidar shots per velocity estimate) is determined with computer simulations for general conditions. The sampling errors for overlaid lidar tracks and tropospheric wind field conditions are also calculated for space-based operation. These results permit useful engineering analysis based on the total observation error of the velocity measurements.

[1]  E. Lindborg Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence? , 1999, Journal of Fluid Mechanics.

[2]  Sammy W. Henderson,et al.  Coherent Doppler Lidar Measurements of Wind Field Statistics , 1998 .

[3]  G. D. Nastrom,et al.  A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft , 1985 .

[4]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[5]  T. N. Krishnamurti,et al.  Lidar-measured winds from space: A key component for weather and climate prediction , 1995 .

[6]  D. Bowdle,et al.  Evidence of a tropospheric aerosol backscatter background mode. , 1989, Applied optics.

[7]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1μm using Tm, Ho:YAG lasers , 1991 .

[8]  S. Henderson,et al.  Remote wind profiling with a solid-state Nd:YAG coherent lidar system. , 1989, Optics letters.

[9]  Rod Frehlich,et al.  Effects of Wind Turbulence on Coherent Doppler Lidar Performance , 1997 .

[10]  Rod Frehlich,et al.  Estimation of Velocity Error for Doppler Lidar Measurements , 2001 .

[11]  Rod Frehlich,et al.  Performance of Mean-Frequency Estimators for Doppler Radar and Lidar , 1994 .

[12]  R. Hardesty,et al.  Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems , 1996, Proc. IEEE.

[13]  Sammy W. Henderson,et al.  Coherent laser radar at 2 μm using solid-state lasers , 1993, IEEE Trans. Geosci. Remote. Sens..

[14]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[15]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation , 1993, IEEE Trans. Geosci. Remote. Sens..

[16]  Rod Frehlich Simulation of Coherent Doppler Lidar Performance in the Weak-Signal Regime , 1996 .

[17]  Rod Frehlich,et al.  Simulation of Coherent Doppler Lidar Performance for Space-Based Platforms , 2000 .

[18]  T. N. Krishnamurti,et al.  An Observing System Simulation Experiment for the Laser Atmospheric Wind Sounder (LAWS). , 1993 .

[19]  P. Flamant,et al.  Simulation in the time domain for heterodyne coherent laser radar. , 1995, Applied optics.

[20]  S. Henderson,et al.  Coherent Doppler lidar measurements of winds in the weak signal regime. , 1997, Applied optics.

[21]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[22]  B. J. Rye Spectral correlation of atmospheric lidar returns with range-dependent backscatter , 1990 .

[23]  B. J. Rye,et al.  Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound , 1993, IEEE Trans. Geosci. Remote. Sens..

[24]  Sammy W. Henderson,et al.  Performance of a 2-µm Coherent Doppler Lidar for Wind Measurements , 1994 .

[25]  R. Frehlich Errors for Space-Based Doppler Lidar Wind Measurements: Definition, Performance, and Verification , 2001 .

[26]  S. Henderson,et al.  Eye-safe coherent laser radar system at 2.1 microm using Tm,Ho:YAG lasers. , 1991, Optics letters.

[27]  R Frehlich,et al.  Coherent Doppler lidar signal covariance including wind shear and wind turbulence. , 1994, Applied optics.

[28]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[29]  D. Bowdle,et al.  Mid‐tropospheric aerosol backscatter background mode over the Pacific Ocean at 9.1 µm wavelength , 1996 .

[30]  T R Lawrence,et al.  Feasibility studies for a global wind measuring satellite system (Windsat): analysis of simulated performance. , 1984, Applied optics.

[31]  R. M. Hardesty,et al.  Coherent Doppler lidar for measurements of wind fields , 1989, Proc. IEEE.

[32]  R. Menzies,et al.  Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit. , 1986, Applied optics.

[33]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .