The Local Binary Pattern Approach and its Applications to Face Analysis

The local binary pattern (LBP) operator is defined as a gray-scale invariant texture measure, derived from a general definition of texture in a local neighborhood. Due to its discriminative power and computational simplicity, the LBP texture operator has become a popular approach in various applications, including visual inspection, image retrieval, remote sensing, biomedical image analysis, motion analysis, environment modelling, and outdoor scene analysis. Recent developments showed that the local binary pattern texture method also provides outstanding results in representing and analyzing faces in both still images and video sequences. This paper describes the tutorial that will be lectured at The International Workshops on Image Processing Theory, Tools and Applications (IPTA'08) and presents an overview of applying LBP approach to various face analysis related tasks, including eye detection, face recognition, face detection, facial expression recognition, visual-speech recognition and gender classification.

[1]  Bingpeng Ma,et al.  Robust Head Pose Estimation Using LGBP , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[2]  Matti Pietikäinen,et al.  Local spatiotemporal descriptors for visual recognition of spoken phrases , 2007, HCM '07.

[3]  Tomaso A. Poggio,et al.  Face recognition: component-based versus global approaches , 2003, Comput. Vis. Image Underst..

[4]  Jean-Philippe Thiran,et al.  On performance evaluation of face detection and localization algorithms , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[5]  Changyin Sun,et al.  Gender Classification Based on Boosting Local Binary Pattern , 2006, ISNN.

[6]  Hyeonjoon Moon,et al.  The FERET evaluation methodology for face-recognition algorithms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  G. Sapiro,et al.  A Riemannian Weighted Filter for Edge-sensitive Image Smoothing , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[8]  Wen Gao,et al.  Ensemble of Piecewise FDA Based on Spatial Histograms of Local (Gabor) Binary Patterns for Face Recognition , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[9]  Alex Pentland,et al.  A Bayesian similarity measure for direct image matching , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[10]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Volume Local Binary Patterns , 2006, WDV.

[11]  B. K. Julsing,et al.  Face Recognition with Local Binary Patterns , 2012 .

[12]  Stan Z. Li,et al.  Shape localization based on statistical method using extended local binary pattern , 2004, Third International Conference on Image and Graphics (ICIG'04).

[13]  Ralph Gross,et al.  The CMU Motion of Body (MoBo) Database , 2001 .

[14]  Matti Pietikäinen,et al.  Learning Personal Specific Facial Dynamics for Face Recognition from Videos , 2007, AMFG.

[15]  Sébastien Marcel,et al.  Face Authentication Using Adapted Local Binary Pattern Histograms , 2006, ECCV.

[16]  Shaogang Gong,et al.  Robust facial expression recognition using local binary patterns , 2005, IEEE International Conference on Image Processing 2005.

[17]  M. Pietikäinen,et al.  Facial Expression Recognition with Local Binary Patterns and Linear Programming 1 , 2005 .

[18]  M. Pietikäinen,et al.  TEXTURE ANALYSIS WITH LOCAL BINARY PATTERNS , 2004 .

[19]  Ran He,et al.  Highly Accurate and Fast Face Recognition Using Near Infrared Images , 2006, ICB.

[20]  Tieniu Tan,et al.  Graph Matching Iris Image Blocks with Local Binary Pattern , 2006, ICB.

[21]  Kuldip K. Paliwal,et al.  Noise compensation in a person verification system using face and multiple speech feature , 2003, Pattern Recognit..

[22]  Seok-Cheol Kee,et al.  LBP Discriminant Analysis for Face Verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[23]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Matti Pietikäinen,et al.  Face recognition based on the appearance of local regions , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[25]  Norbert Krüger,et al.  Face recognition by elastic bunch graph matching , 1997, Proceedings of International Conference on Image Processing.

[26]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System: Its Purpose, Features, and Structure , 2003, ICVS.

[27]  Patrick J. Flynn,et al.  Overview of the face recognition grand challenge , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Yajie Tian,et al.  Handbook of face recognition , 2003 .

[29]  Sébastien Marcel,et al.  Robust-to-Illumination Face Localisation using Active Shape Models and Local Binary Patterns , 2006 .

[30]  Wen Gao,et al.  Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[31]  M. Pietikäinen,et al.  FACIAL EXPRESSION RECOGNITION WITH LOCAL BINARY PATTERNS AND LINEAR PROGRAMMING , 2004 .

[32]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[33]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[34]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Stan Z. Li,et al.  FloatBoost learning and statistical face detection , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Stan Z. Li,et al.  3D+2D Face Recognition by Fusion at Both Feature and Decision Levels , 2005 .

[37]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[38]  Bruce A. Draper,et al.  The CSU Face Identification Evaluation System , 2005, Machine Vision and Applications.

[39]  Hanqing Lu,et al.  Face detection using improved LBP under Bayesian framework , 2004, Third International Conference on Image and Graphics (ICIG'04).

[40]  Matti Pietikäinen,et al.  Combining motion and appearance for gender classification from video sequences , 2008, 2008 19th International Conference on Pattern Recognition.

[41]  Sébastien Marcel,et al.  Local binary patterns as an image preprocessing for face authentication , 2006, 7th International Conference on Automatic Face and Gesture Recognition (FGR06).

[42]  Matti Pietikäinen,et al.  A discriminative feature space for detecting and recognizing faces , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[43]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Hanqing Lu,et al.  Learning Local Descriptors for Face Detection , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[45]  Stan Z. Li,et al.  Jensen-Shannon boosting learning for object recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[46]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Xihong Wu,et al.  Boosting Local Binary Pattern (LBP)-Based Face Recognition , 2004, SINOBIOMETRICS.

[48]  Takeo Kanade,et al.  Comprehensive database for facial expression analysis , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).