An electron–water pseudopotential for condensed phase simulation

A simple electron–molecule pseudopotential is obtained that describes the interaction between an excess electron and a rigid water molecule in the electronic ground state. The potential is completely local and involves only spherically symmetric terms with respect to the three molecular nuclei (interaction site model). The potential is thus suitable for large‐scale computer simulations, as well as more analytical theories. A description is given of the contributions included in this potential, as well as the ramifications of alternative choices.

[1]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[2]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[3]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[4]  S. Salvini,et al.  Exchange approximations in the scattering of slow electrons by polyatomic molecules , 1981 .

[5]  E. Clementi,et al.  Study of the structure of molecular complexes. III. Energy surface of a water molecule in the field of a fluorine or chlorine anion , 1973 .

[6]  Leonard Kleinman,et al.  New Method for Calculating Wave Functions in Crystals and Molecules , 1959 .

[7]  F. Gianturco,et al.  The scattering of slow electrons by polyatomic molecules. A model study for CH4, H2O and H2S , 1980 .

[8]  A. Jain Elastic scattering of electrons and positrons by CH4 at 25–800 eV , 1983 .

[9]  D. Chandler,et al.  Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .

[10]  F. Stillinger,et al.  Improved simulation of liquid water by molecular dynamics , 1974 .

[11]  B. Montgomery Pettitt,et al.  The interionic potential of mean force in a molecular polar solvent from an extended RISM equation , 1983 .

[12]  P. Rossky,et al.  Electron localization in liquid water: A computer simulation study of microscopic trapping sites , 1986 .

[13]  C. Noble,et al.  Equivalent exchange potentials in electron scattering , 1976 .

[14]  N. Chandra,et al.  Electron-molecule interactions. IV. Scattering by polyatomic molecules , 1972 .

[15]  R. Impey,et al.  Study of electron solvation in polar solvents using path integral calculations , 1986 .

[16]  G. Arrighini,et al.  SCF MO's and Molecular Properties of H2O , 1970 .

[17]  F. Stillinger,et al.  Study of the water octamer using the polarization model of molecular interactions , 1980 .

[18]  M. Klein,et al.  Computer simulation of muonium in water , 1984 .

[19]  S. Rice,et al.  Study of the Properties of an Excess Electron in Liquid Helium. I. The Nature of the Electron—Helium Interactions , 1965 .

[20]  Volker Heine,et al.  The Pseudopotential Concept , 1970 .

[21]  R. Impey,et al.  Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations , 1985 .

[22]  L. Collins,et al.  Exchange in low-energy electron-molecule scattering: Free-electron-gas model exchange potentials and applications to e-H2 and e-N2 collisions , 1978 .

[23]  F. Faisal Electron-molecule interactions. I. Single-centre wave functions and potentials , 1970 .

[24]  Donald G. Truhlar,et al.  Approximations for the exchange potential in electron scattering , 1975 .

[25]  Klein,et al.  Computer simulation of a quantum particle in a quenched disordered system: Direct observation of Lifshitz traps. , 1985, Physical review. B, Condensed matter.

[26]  William F. Meggers,et al.  Quantum Theory of Atomic Structure , 1960 .

[27]  E. Clementi,et al.  Study of the structure of molecular complexes. V. Heat of formation for the Li+, Na+, K+, F−, and Cl− ion complexes with a single water molecule , 1973 .

[28]  Aneesur Rahman,et al.  Hydrated electron revisited via the feynman path integral route , 1986 .

[29]  R. A. Kuharski,et al.  A quantum mechanical study of structure in liquid H2O and D2O , 1985 .

[30]  W. D. Robb,et al.  Low-energy collisions of electrons with highly polar molecules: Orthogonalization and model exchange potentials , 1979 .

[31]  A. Jain Electron scattering with methane molecules at 20–500 eV , 1984 .

[32]  R. Moccia One‐Center Basis Set SCF MO's. III. H2O, H2S, and HCl , 1964 .

[33]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[34]  C. Deutsch,et al.  Diffraction corrections to the equilibrium properties of the classical electron gas. Pair correlation function , 1976 .

[35]  F. A. Gianturco,et al.  Computed static potentials for AHn molecules: a scattering-orintated form , 1976 .

[36]  Stuart A. Rice,et al.  Low-Energy Elastic Scattering of Electrons and Positrons from Helium Atoms , 1965 .

[37]  Hall,et al.  Behavior of an electron in helium gas. , 1985, Physical review. B, Condensed matter.

[38]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[39]  Shunsuke Hara,et al.  The Scattering of Slow Electrons by Hydrogen Molecules , 1967 .

[40]  A. Jain,et al.  Elastic scattering of slow electrons by CH4 and H2O using a local exchange potential and new polarisation potential , 1982 .

[41]  N. Chandra,et al.  Electron-molecule interactions. III. A pseudo-potential method for e--N2 scattering , 1972 .

[42]  Sunney I. Chan,et al.  Approximate Hartree–Fock Wavefunctions, One‐Electron Properties, and Electronic Structure of the Water Molecule , 1968 .

[43]  F. Stillinger,et al.  Molecular Dynamics Study of Liquid Water , 1971 .

[44]  Peter J. Rossky,et al.  Quantum simulation study of the hydrated electron , 1987 .

[45]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .