A unified approach to determining forms for the 2D Navier-Stokes equations - The general interpolants case
暂无分享,去创建一个
[1] R. Kraichnan. Inertial Ranges in Two‐Dimensional Turbulence , 1967 .
[2] Richard E. Mortensen,et al. Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Roger Temam) , 1991, SIAM Rev..
[3] Meinhard E. Mayer,et al. Navier-Stokes Equations and Turbulence , 2008 .
[4] George R. Sell,et al. Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations , 1989 .
[5] Bernardo Cockburn,et al. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems , 1997, Math. Comput..
[6] Thierry Gallouët,et al. Nonlinear Schrödinger evolution equations , 1980 .
[7] G. Sell,et al. Inertial manifolds for nonlinear evolutionary equations , 1988 .
[8] Vincent Liu. A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations , 1993 .
[9] Edriss S. Titi,et al. Continuous Data Assimilation Using General Interpolant Observables , 2013, J. Nonlinear Sci..
[10] Edriss S. Titi,et al. On a criterion for locating stable stationary solutions to the Navier-Stokes equations , 1987 .
[11] Roger Temam,et al. Navier-Stokes Equations and Turbulence by C. Foias , 2001 .
[12] C. Foiaș,et al. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension $2$ , 1967 .
[13] C. Foias. What do the Navier-Stokes equations tell us about turbulence , 1995 .
[14] Edriss S. Titi,et al. A determining form for the two-dimensional Navier-Stokes equations: The Fourier modes case , 2012 .
[15] Time analyticity with higher norm estimates for the 2D Navier-Stokes equations , 2013, 1312.0929.
[16] J. Hale. Asymptotic Behavior of Dissipative Systems , 1988 .
[17] R. Temam,et al. Determination of the solutions of the Navier-Stokes equations by a set of nodal values , 1984 .
[18] R. Temam,et al. On the dimension of the attractors in two-dimensional turbulence , 1988 .
[19] Donald A. Jones,et al. Determining finite volume elements for the 2D Navier-Stokes equations , 1992 .
[20] T. Tatsumi. Theory of Homogeneous Turbulence , 1980 .
[21] Gerd Baumann,et al. Navier–Stokes Equations on R3 × [0, T] , 2016 .
[22] Edriss S. Titi,et al. Feedback Control of Nonlinear Dissipative Systems by Finite Determining Parameters - A Reaction-diffusion Paradigm , 2013, 1301.6992.
[23] Roger Temam,et al. Navier-Stokes Equations and Turbulence. Encyclopedia of Math and its Applications, Vol. 83 , 2002 .
[24] C. Leith. Diffusion Approximation for Two‐Dimensional Turbulence , 1968 .
[25] R. Temam,et al. Asymptotic numerical analysis for the Navier-Stokes equations, 1 , 1982 .