Stochastic self-organizing map variants with the R package SOMbrero

Self-Organizing Maps (SOM) [ ] are a popular clustering and visualization algorithm. Several implementations of the SOM algorithm exist in different mathematical/statistical softwares, the main one being probably the SOM Toolbox [2]. In this presentation, we will introduce an R package, SOMbrero, which implements several variants of the stochastic SOM algorithm. The package includes several diagnosis tools and graphics for interpretation of the results and is provided with a complete documentation and examples.

[1]  Madalina Olteanu,et al.  Efficient interpretable variants of online SOM for large dissimilarity data , 2017, Neurocomputing.

[2]  Fabrice Rossi,et al.  Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps , 2006, Neural Networks.

[3]  Marie Cottrell,et al.  How to use the Kohonen algorithm to simultaneously analyze individuals and modalities in a survey , 2005, Neurocomputing.

[4]  Risi Kondor,et al.  Diffusion kernels on graphs and other discrete structures , 2002, ICML 2002.

[5]  Teuvo Kohonen,et al.  Learning vector quantization , 1998 .

[6]  Madalina Olteanu,et al.  Using SOMbrero for clustering and visualizing graphs , 2015 .

[7]  Hujun Yin,et al.  Kernel self-organising maps for classification , 2006, Neurocomputing.

[8]  Marie Cottrell,et al.  A Kohonen map representation to avoid misleading interpretations , 1996, The European Symposium on Artificial Neural Networks.

[9]  Alexander J. Smola,et al.  Kernels and Regularization on Graphs , 2003, COLT.

[10]  Péter András Kernel-Kohonen Networks , 2002, Int. J. Neural Syst..

[11]  Christopher M. Bishop,et al.  GTM: The Generative Topographic Mapping , 1998, Neural Computation.

[12]  Fabrice Rossi,et al.  A comparison between dissimilarity SOM and kernel SOM for clustering the vertices of a graph , 2007 .

[13]  Klaus Obermayer,et al.  Self-organizing maps: Generalizations and new optimization techniques , 1998, Neurocomputing.

[14]  François Fouss,et al.  Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation , 2007, IEEE Transactions on Knowledge and Data Engineering.

[15]  Panu Somervuo,et al.  Self-organizing maps of symbol strings , 1998, Neurocomputing.

[16]  Donald E. Knuth,et al.  The Stanford GraphBase - a platform for combinatorial computing , 1993 .

[17]  Madalina Olteanu,et al.  Accelerating stochastic kernel SOM , 2017, ESANN.

[18]  Fabrice Rossi How Many Dissimilarity/Kernel Self Organizing Map Variants Do We Need? , 2014, WSOM.

[19]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[20]  Madalina Olteanu,et al.  On-line relational and multiple relational SOM , 2015, Neurocomputing.

[21]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[22]  T. Heskes Energy functions for self-organizing maps , 1999 .

[23]  Madalina Olteanu,et al.  SOMbrero: An R Package for Numeric and Non-numeric Self-Organizing Maps , 2014, WSOM.

[24]  T. Kohonen Analysis of a simple self-organizing process , 1982, Biological Cybernetics.

[25]  Barbara Hammer,et al.  Topographic Mapping of Large Dissimilarity Data Sets , 2010, Neural Computation.

[26]  Michael Biehl,et al.  Adaptive Relevance Matrices in Learning Vector Quantization , 2009, Neural Computation.

[27]  Lev Goldfarb,et al.  A unified approach to pattern recognition , 1984, Pattern Recognit..

[28]  Marie Cottrell,et al.  Analysing a Contingency Table with Kohonen Maps: A Factorial Correspondence Analysis , 1993, IWANN.

[29]  Georg Pölzlbauer Survey and Comparison of Quality Measures for Self-Organizing Maps , 2004 .

[30]  Marie Cottrell,et al.  On-Line Relational SOM for Dissimilarity Data , 2012, WSOM.

[31]  Colin Fyfe,et al.  The kernel self-organising map , 2000, KES'2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.00TH8516).

[32]  Yves Lechevallier,et al.  Une adaptation des cartes auto-organisatrices pour des données décrites par un tableau de dissimilarités , 2007, ArXiv.