Network satisfaction for symmetric relation algebras with a flexible atom

Robin Hirsch posed in 1996 the Really Big Complexity Problem: classify the computational complexity of the network satisfaction problem for all finite relation algebras $\bf A$. We provide a complete classification for the case that $\bf A$ is symmetric and has a flexible atom; the problem is in this case NP-complete or in P. If a finite integral relation algebra has a flexible atom, then it has a normal representation $\mathfrak{B}$. We can then study the computational complexity of the network satisfaction problem of ${\bf A}$ using the universal-algebraic approach, via an analysis of the polymorphisms of $\mathfrak{B}$. We also use a Ramsey-type result of Nesetřil and Rodl and a complexity dichotomy result of Bulatov for conservative finite-domain constraint satisfaction problems.

[1]  Libor Barto,et al.  The Dichotomy for Conservative Constraint Satisfaction Problems Revisited , 2011, 2011 IEEE 26th Annual Symposium on Logic in Computer Science.

[2]  Robin Hirsch,et al.  Algebraic foundations for qualitative calculi and networks , 2016, Theor. Comput. Sci..

[3]  Manuel Bodirsky,et al.  Ramsey classes: examples and constructions , 2015, Surveys in Combinatorics.

[4]  Manuel Bodirsky,et al.  Reducts of finitely bounded homogeneous structures, and lifting tractability from finite-domain constraint satisfaction , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[5]  Andrei A. Bulatov,et al.  Tractable conservative constraint satisfaction problems , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[6]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[7]  Manuel Bodirsky,et al.  Complexity Classification in Infinite-Domain Constraint Satisfaction , 2012, ArXiv.

[8]  Peter Jonsson,et al.  Horn versus full first-order: Complexity dichotomies in algebraic constraint satisfaction , 2010, J. Log. Comput..

[9]  Robin Hirsch,et al.  Relation Algebras of Intervals , 1996, Artif. Intell..

[10]  Manuel Bodirsky,et al.  A Dichotomy for First-Order Reducts of Unary Structures , 2016, Log. Methods Comput. Sci..

[11]  Bernhard Nebel,et al.  On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus , 1999, Artif. Intell..

[12]  Peter Jonsson,et al.  A Model-Theoretic View on Qualitative Constraint Reasoning , 2017, J. Artif. Intell. Res..

[13]  Emil L. Post The two-valued iterative systems of mathematical logic , 1942 .

[14]  Peter B. Ladkin,et al.  On binary constraint problems , 1994, JACM.

[15]  Stephen D. Comer,et al.  Combinatorial aspects of relations , 1984 .

[16]  R. Maddux Some varieties containing relation algebras , 1982 .

[17]  Andrei A. Bulatov,et al.  Conservative constraint satisfaction re-revisited , 2014, J. Comput. Syst. Sci..

[18]  Wilfrid Hodges,et al.  A Shorter Model Theory , 1997 .

[19]  Roger D. Maddux,et al.  A perspective on the theory of relation algebras , 1994 .

[20]  Jaroslav Nesetril,et al.  Constraint Satisfaction with Countable Homogeneous Templates , 2003, J. Log. Comput..

[21]  Manuel Bodirsky,et al.  Determining the consistency of partial tree descriptions , 2007, Artif. Intell..

[22]  Bernhard Nebel,et al.  Qualitative Spatial Reasoning Using Constraint Calculi , 2007, Handbook of Spatial Logics.

[23]  Jaroslav Nesetril,et al.  All those Ramsey classes (Ramsey classes with closures and forbidden homomorphisms) , 2016, ArXiv.

[24]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[25]  Robin Hirsch,et al.  Expressive Power and Complexity in Algebraic Logic , 1997, J. Log. Comput..

[26]  Roger D. Maddux,et al.  Finite Symmetric Integral Relation Algebras with No 3-Cycles , 2006, RelMiCS.

[27]  Michael Pinsker,et al.  Canonical Functions: a proof via topological dynamics , 2016, Contributions Discret. Math..

[28]  Roger D. Maddux,et al.  Representations for Small Relation Algebras , 1994, Notre Dame J. Formal Log..

[29]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[30]  Michael Pinsker,et al.  Minimal functions on the random graph , 2010 .

[31]  Manuel Bodirsky,et al.  Datalog and Constraint Satisfaction with Infinite Templates , 2006, STACS.

[32]  Robin Hirsch,et al.  A Finite Relation Algebra with Undecidable Network Satisfaction Problem , 1999, Log. J. IGPL.

[33]  Michael Pinsker,et al.  PROJECTIVE CLONE HOMOMORPHISMS , 2014, The Journal of Symbolic Logic.

[34]  Manuel Bodirsky Constraint Satisfaction Problems with Infinite Templates , 2008, Complexity of Constraints.

[35]  Manuel Bodirsky,et al.  Hardness of Network Satisfaction for Relation Algebras with Normal Representations , 2020, RAMiCS.

[36]  Barnaby Martin,et al.  Constraint satisfaction problems for reducts of homogeneous graphs , 2016, ICALP.

[37]  C. J. Everett,et al.  The Representation of Relational Algebras. , 1951 .

[38]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[39]  Matteo Cristani,et al.  The complexity of constraint satisfaction problems for small relation algebras , 2004, Artif. Intell..

[40]  Michael Pinsker,et al.  Schaefer's Theorem for Graphs , 2015, J. ACM.

[41]  Robin Hirsch,et al.  Strongly representable atom structures of relation algebras , 2001 .

[42]  Manuel Bodirsky,et al.  Finite Relation Algebras with Normal Representations , 2018, RAMiCS.

[43]  Henry A. Kautz,et al.  Constraint propagation algorithms for temporal reasoning: a revised report , 1989 .

[44]  Ivo Düntsch,et al.  Relation Algebras and their Application in Temporal and Spatial Reasoning , 2005, Artificial Intelligence Review.

[45]  Roger D. Maddux,et al.  Chromatic Graphs, Ramsey Numbers and the Flexible Atom Conjecture , 2008, Electron. J. Comb..