Shape-stabilized phase change materials based on porous supports for thermal energy storage applications

Abstract Phase change materials (PCMs) are widely utilized in latent thermal energy storage and thermal management systems due to their high-energy storage density, high latent heats and excellent capabilities of maintaining almost constant temperature. However, the formidable challenge still seriously limited the performance of PCMs in thermal energy storage systems, such as their leakage and low thermal conductivities. Therefore, appropriate approaches to construct shape-stabilized PCMs (ss-PCMs) and effectively enhance the thermal conductivities are importantly necessary to realize the practical applications of PCMs. Porous supports packaged PCMs provide an effective route for constructing ss-PCMs with enhanced thermal conductivity, mechanical strength, chemical stability and flame resistance. In this review, we aim to assess the advantages/disadvantages of porous materials via summarizing the key research progress on the porous materials (e.g., metal foams, expanded graphite, graphene aerogels, carbon nanotubes, porous minerals, mesoporous silica, etc.) as ss-PCMs supports. The effects of pore size and geometry, surface modification, interaction forces, compositions, etc. on the phase change behaviors of ss-PCMs are summarized and discussed in detail by comparing the different porous materials. We believe that the summary and discussion in the review will lead to a better understanding on the designing and constructing of efficient ss-PCMs, and even shed light on the design for novel porous materials supported ss-PCMs based on the discovered interactions between the porous supports and PCMs. Finally, the future research topics and challenges on porous materials for ss-PCMs development are also prospected with emphasizing on the emergence of new design of porous materials with improved thermal conductivity, high PCMs loading amount and high thermal latent for practical applications.

[1]  R. Akhtar,et al.  Microencapsulated Phase Change Materials in Solar-Thermal Conversion Systems: Understanding Geometry-Dependent Heating Efficiency and System Reliability. , 2017, ACS nano.

[2]  S. M. Sadrameli,et al.  A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium , 2014 .

[3]  Ya-Ling He,et al.  Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media , 2017 .

[4]  Shufen Zhang,et al.  Novel semi‐interpenetrating network structural phase change composites with high phase change enthalpy , 2018 .

[5]  Nasiru I. Ibrahim,et al.  Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review , 2017 .

[6]  Jinlong Zhu,et al.  Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges. , 2012, ACS nano.

[7]  Dong Zhang,et al.  Experimental study on the phase change behavior of phase change material confined in pores , 2007 .

[8]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[9]  Liangjie Fu,et al.  Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage , 2013, Scientific Reports.

[10]  Xiaohu Yang,et al.  The role of porous metal foam on the unidirectional solidification of saturating fluid for cold storage , 2017 .

[11]  G. Fang,et al.  Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials , 2014 .

[12]  Shuangfeng Wang,et al.  A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications , 2014 .

[13]  G. Fang,et al.  Morphological characterization and applications of phase change materials in thermal energy storage: A review , 2017 .

[14]  Zhengguo Zhang,et al.  Study on paraffin/expanded graphite composite phase change thermal energy storage material , 2006 .

[15]  X. Lan,et al.  Mesoscopic Phase Behavior of Tridecane–Tetradecane Mixtures Confined in Porous Materials: Effects of Pore Size and Pore Geometry , 2013 .

[16]  Hongyi Gao,et al.  Shape‐Stabilized Phase Change Materials Based on Stearic Acid and Mesoporous Hollow SiO2 Microspheres (SA/SiO2) for Thermal Energy Storage , 2017 .

[17]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[18]  Zhengguo Zhang,et al.  Investigations on the thermal stability, long-term reliability of LiNO3/KCl – expanded graphite composite as industrial waste heat storage material and its corrosion properties with metals , 2017 .

[19]  E. Onder,et al.  Organic phase change materials and their textile applications: An overview , 2012 .

[20]  Shufen Zhang,et al.  Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure , 2016 .

[21]  Yibing Cai,et al.  Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats , 2013 .

[22]  Tao Wang,et al.  Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage , 2015 .

[23]  Jinhong Li,et al.  Enhanced thermal conductivity of PEG/diatomite shape-stabilized phase change materials with Ag nanoparticles for thermal energy storage , 2015 .

[24]  A. Khoddami,et al.  Improvement in fastness properties of phase-change material applied on surface modified wool fabrics , 2010 .

[25]  Min Li,et al.  Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage , 2017, Solar energy.

[26]  Kamal Abdel Radi Ismail,et al.  Thermally effective windows with moving phase change material curtains , 2001 .

[27]  Ming Yang,et al.  Highly porous carbons derived from MOFs for shape-stabilized phase change materials with high storage capacity and thermal conductivity , 2016 .

[28]  Hua Zhang,et al.  Graphene-based composites. , 2012, Chemical Society reviews.

[29]  R. Ruoff,et al.  Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage , 2014 .

[30]  Xin-xin Zhang,et al.  Thermal properties of C17H36/MCM-41 composite phase change materials , 2015 .

[31]  Ping Zhang,et al.  Phase change materials based on polyethylene glycol supported by graphene-based mesoporous silica sheets , 2016 .

[32]  Hanxue Sun,et al.  Graphene–nickel/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage , 2015 .

[33]  Yali Li,et al.  Design and preparation of shape-stabilized composite phase change material with high thermal reliability via encapsulating polyethylene glycol into flower-like TiO2 nanostructure for thermal energy storage , 2017 .

[34]  Cristina H Amon,et al.  Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance , 2013, Nature Communications.

[35]  M. K. Rathod,et al.  Thermal stability of phase change materials used in latent heat energy storage systems: A review , 2013 .

[36]  Peiwen Li,et al.  Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments , 2015 .

[37]  X. Lü,et al.  Heat transport enhancement of thermal energy storage material using graphene/ceramic composites , 2014 .

[38]  Jinhong Li,et al.  Pore structure modified diatomite-supported PEG composites for thermal energy storage , 2016, Scientific Reports.

[39]  Haifeng Shi,et al.  Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials , 2013 .

[40]  K. Liao,et al.  From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials , 2014 .

[41]  Yanping Yuan,et al.  A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage , 2014 .

[42]  K. Pielichowski,et al.  Phase change materials for thermal energy storage , 2014 .

[43]  X. Lan,et al.  New phase behavior of n-undecane–tridecane mixtures confined in porous materials with pore sizes in a wide mesoscopic range , 2013 .

[44]  Shi-bin Nie,et al.  Porous MgO material with ultrahigh surface area as the matrix for phase change composite , 2015 .

[45]  Ming Li,et al.  Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage , 2014 .

[46]  T. Mahlia,et al.  Preparation and properties of highly conductive palmitic acid/ graphene oxide composites as thermal energy storage materials , 2013 .

[47]  Zhong-Zhen Yu,et al.  Enhanced Thermal Conductivity in a Nanostructured Phase Change Composite due to Low Concentration Graphene Additives , 2011 .

[48]  Yi Wang,et al.  Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage , 2011 .

[49]  R. Warzoha,et al.  Heat flow at nanoparticle interfaces , 2014 .

[50]  J. Sanjayan,et al.  Fabrication and stability of form-stable diatomite/paraffin phase change material composites , 2014 .

[51]  T. Uemura,et al.  Molecular-Level Studies on Dynamic Behavior of Oligomeric Chain Molecules in Porous Coordination Polymers , 2015 .

[52]  Tao Xu,et al.  Preparation and thermal energy storage properties of LiNO3-KCl-NaNO3/expanded graphite composite phase change material , 2017 .

[53]  Wei Li,et al.  Novel phase change behavior of n-eicosane in nanoporous silica: emulsion template preparation and structure characterization using small angle X-ray scattering. , 2013, Physical chemistry chemical physics : PCCP.

[54]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage , 2009 .

[55]  Xin Fang,et al.  Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets , 2014 .

[56]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[57]  Wei Li,et al.  The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams , 2014 .

[58]  Haohao Wu,et al.  Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage , 2018 .

[59]  Ang Li,et al.  Highly graphitized 3D network carbon for shape-stabilized composite PCMs with superior thermal energy harvesting , 2018, Nano Energy.

[60]  Peng Zhang,et al.  Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system , 2016 .

[61]  A. Sari,et al.  Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material , 2007 .

[62]  A. Sari,et al.  Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid–solid phase change materials for thermal energy storage , 2012 .

[63]  H. Paksoy,et al.  Review on using microencapsulated phase change materials (PCM) in building applications , 2015 .

[64]  Mi Zhou,et al.  Highly Conductive Porous Graphene/Ceramic Composites for Heat Transfer and Thermal Energy Storage , 2013 .

[65]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[66]  R. K. Sharma,et al.  Developments in organic solid–liquid phase change materials and their applications in thermal energy storage , 2015 .

[67]  Sarah L. Frisco,et al.  The shape-stabilized phase change materials composed of polyethylene glycol and various mesoporous matrices (AC, SBA-15 and MCM-41) , 2011 .

[68]  Zeyu Lu,et al.  Preparation and characterization of expanded perlite/paraffin composite as form-stable phase change material , 2014 .

[69]  Jinhong Li,et al.  Single-walled carbon nanotube for shape stabilization and enhanced phase change heat transfer of polyethylene glycol phase change material , 2017 .

[70]  Wei Yang,et al.  Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability , 2018 .

[71]  Subrata Sengupta,et al.  Effect of porosity of conducting matrix on a phase change energy storage device , 2016 .

[72]  Benxia Li,et al.  Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light–heat conversion for thermal energy storage , 2015 .

[73]  Jay G. Sanjayan,et al.  A novel paraffin/expanded perlite composite phase change material for prevention of PCM leakage in cementitious composites , 2015 .

[74]  Jue Cheng,et al.  Study on a reliable epoxy-based phase change material: facile preparation, tunable properties, and phase/microphase separation behavior , 2017 .

[75]  Jinyue Yan,et al.  Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage , 2009 .

[76]  J. Darkwa,et al.  Review of solid–liquid phase change materials and their encapsulation technologies , 2015 .

[77]  H. Tsao,et al.  Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces , 2016 .

[78]  S. D. Pohekar,et al.  Performance enhancement in latent heat thermal storage system: A review , 2009 .

[79]  Jay G. Sanjayan,et al.  Development of granular expanded perlite/paraffin phase change material composites and prevention of leakage , 2016 .

[80]  L. W. Wang,et al.  Development of highly conductive KNO3/NaNO3 composite for TES (thermal energy storage) , 2014 .

[81]  Wei Li,et al.  Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: The influence of the pore structure of the carbon materials , 2012 .

[82]  Tao Xu,et al.  A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage , 2016 .

[83]  J. Irvine,et al.  Synthesis and applications of nanoporous perovskite metal oxides , 2018, Chemical science.

[84]  Huaming Yang,et al.  Porous ceramic stabilized phase change materials for thermal energy storage , 2016 .

[85]  S. Ushak,et al.  A review on encapsulation techniques for inorganic phase change materials and the influence on their thermophysical properties , 2017 .

[86]  Zhong Xin,et al.  Thermal properties of paraffin based composites containing multi-walled carbon nanotubes , 2009 .

[87]  Shufen Zhang,et al.  Light-heat conversion and thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Ti4O7 doping , 2017 .

[88]  Roberto J. J. Williams,et al.  Epoxy-Based Organogels for Thermally Reversible Light Scattering Films and Form-Stable Phase Change Materials. , 2017, ACS applied materials & interfaces.

[89]  Chen Wang,et al.  Synthesis of porous carbon from cotton using an Mg(OH)2 template for form-stabilized phase change materials with high encapsulation capacity, transition enthalpy and reliability , 2018 .

[90]  Hongyi Gao,et al.  Introduction of an organic acid phase changing material into metal–organic frameworks and the study of its thermal properties , 2016 .

[91]  T. Akiyama,et al.  Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation , 2015 .

[92]  Shudong Zhang,et al.  Thermodynamics behavior of phase change latent heat materials in micro-/nanoconfined spaces for thermal storage and applications , 2018 .

[93]  Shufen Zhang,et al.  A full-band sunlight-driven carbon nanotube/PEG/SiO2 composites for solar energy storage , 2014 .

[94]  S. Raoux Phase Change Materials , 2009 .

[95]  Jay M. Khodadadi,et al.  Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review , 2013 .

[96]  H. Daiguji,et al.  Crystallization and Melting Behavior of Erythritol In and Around Two-Dimensional Hexagonal Mesoporous Silica , 2015 .

[97]  Wei Yang,et al.  Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets , 2017 .

[98]  T. Mahlia,et al.  One-Step Preparation of Form-Stable Phase Change Material through Self-Assembly of Fatty Acid and Graphene , 2015 .

[99]  Rahmatollah Khodabandeh,et al.  A novel phase change material containing mesoporous silica nanoparticles for thermal storage : A study on thermal conductivity and viscosity , 2014 .

[100]  Peng Zhang,et al.  Preparation and thermal characterization of paraffin/metal foam composite phase change material , 2013 .

[101]  Nasiru I. Ibrahim,et al.  A review on current status and challenges of inorganic phase change materials for thermal energy storage systems , 2017 .

[102]  Hui‐Ming Cheng,et al.  Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. , 2011, Nature materials.

[103]  Zhang Qiang,et al.  Preparation and enhanced heat capacity of nano-titania doped erythritol as phase change material , 2015 .

[104]  Zhan Shi,et al.  Effect of metal species on the morphology of metal (oxides) within mesochannels of SBA-15 via a double-solvent method , 2015 .

[105]  Bjørn Petter Jelle,et al.  Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities , 2015 .

[106]  Zhishen Wu,et al.  Enhancement in thermal property and mechanical property of phase change microcapsule with modified carbon nanotube , 2014 .

[107]  Liping Liu,et al.  Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline , 2017 .

[108]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[109]  E. Shchukina,et al.  Nanoencapsulation of phase change materials for advanced thermal energy storage systems , 2018, Chemical Society reviews.

[110]  Murat Kenisarin,et al.  Form-stable phase change materials for thermal energy storage , 2012 .

[111]  J. Zou,et al.  High activity electrocatalysts from metal-organic framework-carbon nanotube templates for the oxygen reduction reaction , 2015 .

[112]  Ahmet Sarı,et al.  Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage , 2008 .

[113]  T. Kousksou,et al.  Energy storage: Applications and challenges , 2014 .

[114]  Wei Yang,et al.  An ice-templated assembly strategy to construct graphene oxide/boron nitride hybrid porous scaffolds in phase change materials with enhanced thermal conductivity and shape stability for light–thermal–electric energy conversion , 2016 .

[115]  A. Sari Composites of polyethylene glycol (PEG600) with gypsum and natural clay as new kinds of building PCMs for low temperature-thermal energy storage , 2014 .

[116]  A. Tang,et al.  Kaolinite stabilized paraffin composite phase change materials for thermal energy storage , 2015 .

[117]  Yali Li,et al.  Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer , 2016 .

[118]  A. Balandin Thermal properties of graphene and nanostructured carbon materials. , 2011, Nature materials.

[119]  T. Akiyama,et al.  Shape-stabilized phase change composite by impregnation of octadecane into mesoporous SiO2 , 2015 .

[120]  Chuanchang Li,et al.  Graphene-decorated silica stabilized stearic acid as a thermal energy storage material , 2017 .

[121]  Jingqi Li,et al.  Thermal conductivity of multiwalled carbon nanotubes , 2002 .

[122]  A. Sari,et al.  Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes , 2017 .

[123]  Ni Zhang,et al.  Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material , 2012 .

[124]  Junqiao Wu,et al.  Thermal diodes, regulators, and switches: Physical mechanisms and potential applications , 2017 .

[125]  Zongjin Li,et al.  Preparation and characterization of an expanded perlite/paraffin/graphene oxide composite with enhanced thermal conductivity and leakage-bearing properties , 2015 .

[126]  Martin Belusko,et al.  Review on transportable phase change material in thermal energy storage systems , 2017 .

[127]  Peng Zhang,et al.  Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam , 2017 .

[128]  Jianjian Wang,et al.  Reversible temperature regulation of electrical and thermal conductivity using liquid–solid phase transitions , 2011, Nature communications.

[129]  S. C. Solanki,et al.  Heat transfer characteristics of thermal energy storage system using PCM capsules: A review , 2008 .

[130]  F. Al-Sulaiman,et al.  A review for phase change materials (PCMs) in solar absorption refrigeration systems , 2017 .

[131]  Sung-Tae Hong,et al.  Effects of Surface Area Density of Aluminum Foams on Thermal Conductivity of Aluminum Foam‐Phase Change Material Composites , 2007 .

[132]  Yunfeng Lu,et al.  Surface functionalization engineering driven crystallization behavior of polyethylene glycol confined in mesoporous silica for shape-stabilized phase change materials , 2016 .

[133]  Shufen Zhang,et al.  Ultrafast and efficient photothermal conversion for sunlight-driven thermal-electric system , 2018, Chemical Engineering Journal.

[134]  Hui Li,et al.  Synthesis and characteristics of form-stable n-octadecane/expanded graphite composite phase change materials , 2010 .

[135]  Peng Zhang,et al.  Experimental and numerical study of heat transfer performance of nitrate/expanded graphite composite PCM for solar energy storage , 2015 .

[136]  Wei Yang,et al.  Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials , 2018, Energy Storage Materials.

[137]  T. Rabczuk,et al.  Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries: A multiscale investigation , 2017, 1706.06667.

[138]  Wei Xia,et al.  Electro/photo to heat conversion system based on polyurethane embedded graphite foam☆ , 2015 .

[139]  Shufen Zhang,et al.  Single‐Walled Carbon Nanotube/Phase Change Material Composites: Sunlight‐Driven, Reversible, Form‐Stable Phase Transitions for Solar Thermal Energy Storage , 2013 .

[140]  G. Fang,et al.  Thermal energy storage materials and systems for solar energy applications , 2017 .

[141]  R. K. Sharma,et al.  Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM) , 2016 .

[142]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[143]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[144]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[145]  W. Dong,et al.  Aromatic heterocycle-grafted NH2-MIL-125(Ti) via conjugated linker with enhanced photocatalytic activity for selective oxidation of alcohols under visible light , 2018 .

[146]  Jing Guo,et al.  In-situ preparation of a shape stable phase change material , 2017 .

[147]  Guoqing Zhang,et al.  Novel shape stabilized phase change material based on epoxy matrix with ultrahigh cycle life for thermal energy storage , 2017 .

[148]  Ang Li,et al.  Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity , 2018, Chemical Engineering Journal.

[149]  R. Ruoff,et al.  Continuous Carbon Nanotube-Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. , 2015, ACS nano.

[150]  X. Lan,et al.  Thermal properties of nano-sized polyethylene glycol confined in silica gels for latent heat storage , 2017 .

[151]  Shan Hu,et al.  The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials , 2011 .

[152]  Yanping Yuan,et al.  Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage , 2013 .

[153]  Weilong Wang,et al.  Preparation of binary eutectic chloride/expanded graphite as high-temperature thermal energy storage materials , 2016 .

[154]  Taeghwan Hyeon,et al.  Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. , 2011, Accounts of chemical research.

[155]  M. Fang,et al.  Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite , 2017 .

[156]  Zhengguo Zhang,et al.  Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material , 2017 .

[157]  P. Kulkarni,et al.  Versatility of polyethylene glycol (PEG) in designing solid–solid phase change materials (PCMs) for thermal management and their application to innovative technologies , 2017 .

[158]  Yi Wang,et al.  Effect of preparation methods on the structure and thermal properties of stearic acid/activated montmorillonite phase change materials , 2012 .

[159]  Jun Zhou,et al.  Hierarchically nanoporous La1.7Ca0.3CuO4−δ and La1.7Ca0.3NixCu1−xO4−δ (0.25 ≤ x ≤ 0.75) as potential cathode materials for IT-SOFCs , 2015 .

[160]  Hideki Tanaka,et al.  Unveiling thermal transitions of polymers in subnanometre pores , 2010, Nature communications.

[161]  Wei Li,et al.  Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide , 2014 .

[162]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[163]  G. Fang,et al.  Thermal properties and morphologies of MA–SA eutectics/CNTs as composite PCMs in thermal energy storage , 2016 .

[164]  Ming-Jian Yang,et al.  Imine-linked micron-network polymers with high polyethylene glycol uptake for shaped-stabilized phase change materials , 2016 .

[165]  Zhishen Wu,et al.  Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material , 2011 .

[166]  J. Fang,et al.  From anisotropic graphene aerogels to electron- and photo-driven phase change composites , 2016 .

[167]  M. Fang,et al.  Preparation and performance of novel form-stable composite phase change materials based on polyethylene glycol/White Carbon Black assisted by super-ultrasound-assisted , 2016 .

[168]  Ruzhu Wang,et al.  Preparation and thermal characterization of expanded graphite/paraffin composite phase change material , 2010 .

[169]  Zhengguo Zhang,et al.  A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion , 2017 .

[170]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[171]  K. Gubbins,et al.  Effects of confinement on freezing and melting , 2006, Journal of physics. Condensed matter : an Institute of Physics journal.

[172]  M. Otyepka,et al.  Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. , 2012, Chemical reviews.

[173]  Huaqing Xie,et al.  Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers , 2010 .

[174]  Xuejuan Wan,et al.  Carbon nanotube-enhanced double-walled phase-change microcapsules for thermal energy storage , 2017 .

[175]  Li Shi,et al.  Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite. , 2012, Nano letters.

[176]  A. Mahmood,et al.  Nanoconfined phase change materials for thermal energy applications , 2018 .

[177]  Ang Li,et al.  Core-sheath structural carbon materials for integrated enhancement of thermal conductivity and capacity , 2018 .

[178]  Hanxue Sun,et al.  Conjugated microporous polymers/n-carboxylic acids composites as form-stable phase change materials for thermal energy storage , 2013 .

[179]  Yanping Yuan,et al.  Lauric–palmitic–stearic acid/expanded perlite composite as form-stable phase change material: Preparation and thermal properties , 2014 .

[180]  X. Zhang,et al.  Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material , 2012 .

[181]  Xin Min,et al.  Integration of Pore Confinement and Hydrogen-Bond Influence on the Crystallization Behavior of C18 PCMs in Mesoporous Silica for Form-Stable Phase Change Materials , 2018 .

[182]  G. Fang,et al.  Microstructure and thermal properties of cetyl alcohol/high density polyethylene composite phase change materials with carbon fiber as shape-stabilized thermal storage materials , 2017 .

[183]  Chuan Zhang,et al.  Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite , 2016 .

[184]  Thomas Osterland,et al.  Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage , 2016 .

[185]  Yajuan Zhong,et al.  Effect of graphene aerogel on thermal behavior of phase change materials for thermal management , 2013 .

[186]  Tianquan Lin,et al.  Carbon microtube/graphene hybrid structures for thermal management applications , 2015 .

[187]  Zhengguo Zhang,et al.  Experimental and numerical investigations on a flexible paraffin/fiber composite phase change material for thermal therapy mask , 2017 .

[188]  Zhongpin Zhang,et al.  Heat collection and supply of interconnected netlike graphene/polyethyleneglycol composites for thermoelectric devices. , 2015, Nanoscale.

[189]  Ge Wang,et al.  1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage , 2017 .

[190]  M. Fang,et al.  Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application , 2016 .

[191]  Jun Hou,et al.  Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity , 2014 .

[192]  Takahiro Nomura,et al.  Phase change composite based on porous nickel and erythritol , 2012 .

[193]  T. Akiyama,et al.  Impregnation of porous material with phase change material for thermal energy storage , 2009 .

[194]  Hui Li,et al.  Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials , 2010 .

[195]  Hongyi Gao,et al.  One-pot synthesis of light-driven polymeric composite phase change materials based on N-doped porous carbon for enhanced latent heat storage capacity and thermal conductivity , 2018, Solar Energy Materials and Solar Cells.

[196]  Liwu Fan,et al.  Thermal conductivity enhancement of phase change materials for thermal energy storage: A review , 2011 .

[197]  A. Sari Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials , 2016 .

[198]  Changying Zhao Review on thermal transport in high porosity cellular metal foams with open cells , 2012 .

[199]  G. Fang,et al.  Experimental Investigation on the Characteristics of Polyethylene Glycol/Cement Composites as Thermal Energy Storage Materials , 2010 .

[200]  Ray P. S. Han,et al.  Alkylated phase change composites for thermal energy storage based on surface-modified silica aerogels , 2015 .

[201]  R. Sun,et al.  A Combination of Boron Nitride Nanotubes and Cellulose Nanofibers for the Preparation of a Nanocomposite with High Thermal Conductivity. , 2017, ACS nano.

[202]  Guiyin Fang,et al.  Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage , 2016 .

[203]  Yanping Yuan,et al.  Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage , 2014 .

[204]  Shengyang Tao,et al.  Phase change in modified hierarchically porous monolith: An extra energy increase , 2014 .

[205]  Aytunç Erek,et al.  Thermal properties of myristic acid/graphite nanoplates composite phase change materials , 2015 .

[206]  A. Sreekumar,et al.  Influence of nanomaterials on properties of latent heat solar thermal energy storage materials – A review , 2014 .

[207]  Shaokun Song,et al.  Stearic–capric acid eutectic/activated-attapulgiate composite as form-stable phase change material for thermal energy storage , 2014 .

[208]  Nasrudin Abd Rahim,et al.  Novel approaches and recent developments on potential applications of phase change materials in solar energy , 2018 .

[209]  G. Fang,et al.  Improved thermal properties of stearyl alcohol/high density polyethylene/expanded graphite composite phase change materials for building thermal energy storage , 2017 .

[210]  Haiting Wei,et al.  Preparation and characterization of capric-myristic-stearic acid eutectic mixture/modified expanded vermiculite composite as a form-stable phase change material , 2016 .

[211]  Yi-min Li,et al.  Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement , 2015 .

[212]  Hongyi Gao,et al.  Porous organic–inorganic hybrid xerogels for stearic acid shape-stabilized phase change materials , 2017 .

[213]  X. Lan,et al.  Polymorphism of a hexadecane–heptadecane binary system in nanopores , 2017 .

[214]  Lei Wang,et al.  Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules , 2014 .

[215]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage , 2010 .

[216]  Hua Yan,et al.  Structure and thermal properties of decanoic acid/expanded graphite composite phase change materials , 2017, Journal of Thermal Analysis and Calorimetry.

[217]  Sher Bahadar Khan,et al.  Structure and thermal properties of octadecane/expanded graphite composites as shape-stabilized phase change materials , 2016 .

[218]  Zhonghao Rao,et al.  Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications , 2017 .

[219]  W. Tao,et al.  Thermal behavior of porous stainless-steel fiber felt saturated with phase change material , 2013 .

[220]  Shufen Zhang,et al.  Fe3O4-functionalized graphene nanosheet embedded phase change material composites: efficient magnetic- and sunlight-driven energy conversion and storage , 2017 .

[221]  X. Lü,et al.  Directional architecture of graphene/ceramic composites with improved thermal conduction for thermal applications , 2014 .

[222]  Hui Xie,et al.  Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane , 2010 .

[223]  Yingying Zhu,et al.  Fabrication and characterization of novel shape-stabilized stearic acid composite phase change materials with tannic-acid-templated mesoporous silica nanoparticles for thermal energy storage , 2017 .

[224]  F. Bruno,et al.  Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage , 2015 .

[225]  Dan Song,et al.  Preparation and performances of bulk porous Al foams impregnated with phase-change-materials for thermal storage , 2012 .

[226]  Hongyi Gao,et al.  Introduction of organic-organic eutectic PCM in mesoporous N-doped carbons for enhanced thermal conductivity and energy storage capacity , 2018 .

[227]  Yajun Lv,et al.  Experimental and numerical study on thermal energy storage of polyethylene glycol/expanded graphite composite phase change material , 2016 .

[228]  D. G. Walker,et al.  A review of thermal rectification observations and models in solid materials , 2011 .

[229]  Wei Yang,et al.  Photodriven Shape-Stabilized Phase Change Materials with Optimized Thermal Conductivity by Tailoring the Microstructure of Hierarchically Ordered Hybrid Porous Scaffolds , 2018 .

[230]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[231]  A. Sari,et al.  Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material , 2009 .

[232]  A. Sari,et al.  Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage , 2011 .

[233]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[234]  X. Lü,et al.  Large-scale preparation of highly conductive three dimensional graphene and its applications in CdTe solar cells , 2011 .

[235]  Lingjuan Wang,et al.  Hexadecanol/phase change polyurethane composite as form-stable phase change material for thermal energy storage , 2016 .

[236]  R. Frost,et al.  Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials , 2013 .

[237]  X. Lan,et al.  Physical Control of Phase Behavior of Hexadecane in Nanopores , 2015 .

[238]  A. Balandin,et al.  Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. , 2012, Nano letters.

[239]  Renjie Chen,et al.  Tailoring carbon nanotube density for modulating electro-to-heat conversion in phase change composites. , 2013, Nano letters.

[240]  Li Shi,et al.  Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit , 2015 .

[241]  Yanping Yuan,et al.  Effect of carbon nanotubes on the thermal behavior of palmitic-stearic acid eutectic mixtures as phase change materials for energy storage , 2014 .

[242]  Min Xiao,et al.  Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity , 2002 .

[243]  W. Tao,et al.  Fatty acids as phase change materials: A review , 2014 .

[244]  Guixiang Ma,et al.  Diverting the phase transition behaviour of adipic acid via mesoporous silica confinement , 2016 .

[245]  Hydrogenation of Penta-Graphene Leads to Unexpected Large Improvement in Thermal Conductivity. , 2016, Nano letters.

[246]  Mohamed Hany Abokersh,et al.  Review of the phase change material (PCM) usage for solar domestic water heating systems (SDWHS) , 2018 .

[247]  G. Fang,et al.  Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage , 2017 .

[248]  N. Pu,et al.  Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives , 2013 .

[249]  Guo Hong,et al.  Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices. , 2017, ACS applied materials & interfaces.

[250]  X. Lan,et al.  Phase behavior of dodecane–hexadecane mixtures in bulk and confined in SBA-15 , 2014, Journal of Thermal Analysis and Calorimetry.

[251]  Hwai Chyuan Ong,et al.  Preparation and thermal characteristics of eutectic fatty acids/Shorea javanica composite for thermal energy storage , 2016 .

[252]  Peng Zhang,et al.  A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement , 2016 .

[253]  Wei Xia,et al.  Nanoconfinement of phase change materials within carbon aerogels: phase transition behaviours and photo-to-thermal energy storage , 2014 .

[254]  Bing Zhang,et al.  Preparation of capric acid/halloysite nanotube composite as form-stable phase change material for thermal energy storage , 2011 .

[255]  Luisa F. Cabeza,et al.  Review on phase change materials (PCMs) for cold thermal energy storage applications , 2012 .

[256]  Lijie Dong,et al.  Lauric acid/intercalated kaolinite as form-stable phase change material for thermal energy storage , 2014 .

[257]  M. Fang,et al.  Preparation and thermal properties of shape-stabilized composite phase change materials based on polyethylene glycol and porous carbon prepared from potato , 2016 .