Subcellular membrane fluidity of Lactobacillus delbrueckii subsp. bulgaricus under cold and osmotic stress

[1]  F. Fonseca,et al.  Biophysical characterization of the Lactobacillus delbrueckii subsp. bulgaricus membrane during cold and osmotic stress and its relevance for cryopreservation , 2017, Applied Microbiology and Biotechnology.

[2]  F. Fonseca,et al.  Determination of Intracellular Vitrification Temperatures for Unicellular Micro Organisms under Conditions Relevant for Cryopreservation , 2016, PloS one.

[3]  D. Weibel,et al.  Organization and function of anionic phospholipids in bacteria , 2016, Applied Microbiology and Biotechnology.

[4]  Sejong Oh,et al.  Cold stress improves the ability of Lactobacillus plantarum L67 to survive freezing. , 2014, International journal of food microbiology.

[5]  Heping Zhang,et al.  Influence of culture conditions and preconditioning on survival of Lactobacillus delbrueckii subspecies bulgaricus ND02 during lyophilization. , 2014, Journal of dairy science.

[6]  M. Pátek,et al.  Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis. , 2013, Biochimica et biophysica acta.

[7]  H. Guillemin,et al.  A low membrane lipid phase transition temperature is associated with a high cryotolerance of Lactobacillus delbrueckii subspecies bulgaricus CFL1. , 2013, Journal of dairy science.

[8]  A. Clarke,et al.  A Low Temperature Limit for Life on Earth , 2013, PloS one.

[9]  Loïc Bertrand,et al.  Synchrotron UV-visible multispectral luminescence microimaging of historical samples. , 2011, Analytical chemistry.

[10]  G. Corrieu,et al.  Microfiltration conditions modify Lactobacillus bulgaricus cryotolerance in response to physiological changes , 2011, Bioprocess and biosystems engineering.

[11]  Nico Stuurman,et al.  Computer Control of Microscopes Using µManager , 2010, Current protocols in molecular biology.

[12]  Frank Wien,et al.  Synchrotron UV Fluorescence Microscopy Uncovers New Probes in Cells and Tissues , 2010, Microscopy and Microanalysis.

[13]  Daniel Zerbib,et al.  DISCO: a low-energy multipurpose beamline at synchrotron SOLEIL. , 2009, Journal of synchrotron radiation.

[14]  M. Bouix,et al.  Multiparametric flow cytometry allows rapid assessment and comparison of lactic acid bacteria viability after freezing and during frozen storage. , 2007, Cryobiology.

[15]  J. Ramos,et al.  A Pseudomonas putida cardiolipin synthesis mutant exhibits increased sensitivity to drugs related to transport functionality. , 2007, Environmental microbiology.

[16]  P. Gervais,et al.  Membrane physical state as key parameter for the resistance of the gram-negative Bradyrhizobium japonicum to hyperosmotic treatments , 2007, Archives of Microbiology.

[17]  F. Fonseca,et al.  Stabilization of Frozen Lactobacillus delbrueckii subsp. bulgaricus in Glycerol Suspensions: Freezing Kinetics and Storage Temperature Effects , 2006, Applied and Environmental Microbiology.

[18]  A. Alice,et al.  Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. , 2006, Microbiology.

[19]  G. Corrieu,et al.  Influence of cooling temperature and duration on cold adaptation of Lactobacillus acidophilus RD758. , 2005, Cryobiology.

[20]  P. Gervais,et al.  Death of Escherichia coli during rapid and severe dehydration is related to lipid phase transition , 2004, Applied Microbiology and Biotechnology.

[21]  Kouji Matsumoto,et al.  Cardiolipin Domains in Bacillus subtilis Marburg Membranes , 2004, Journal of bacteriology.

[22]  P. Gervais,et al.  Cell Size and Water Permeability as Determining Factors for Cell Viability after Freezing at Different Cooling Rates , 2004, Applied and Environmental Microbiology.

[23]  J. Trevors,et al.  Fluorescent probes for bacterial cytoplasmic membrane research. , 2003, Journal of biochemical and biophysical methods.

[24]  P. Hols,et al.  Improved Adaptation to Cold-Shock, Stationary-Phase, and Freezing Stresses in Lactobacillus plantarum Overproducing Cold-Shock Proteins , 2003, Applied and Environmental Microbiology.

[25]  Z. Hubálek,et al.  Protectants used in the cryopreservation of microorganisms. , 2003, Cryobiology.

[26]  G. Corrieu,et al.  Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. , 2001, Cryobiology.

[27]  P. Gervais,et al.  Influence of the fluidity of the membrane on the response of microorganisms to environmental stresses , 2001, Applied Microbiology and Biotechnology.

[28]  E. Disalvo,et al.  Fatty acid composition and freeze-thaw resistance in lactobacilli. , 2000, The Journal of dairy research.

[29]  G. Corrieu,et al.  Method of quantifying the loss of acidification activity of lactic acid starters during freezing and frozen storage. , 2000, The Journal of dairy research.

[30]  B. Poolman,et al.  Mechanism of Osmotic Activation of the Quaternary Ammonium Compound Transporter (QacT) of Lactobacillus plantarum , 1998, Journal of bacteriology.

[31]  W. Kim,et al.  Conservation of the Major Cold Shock Protein in Lactic Acid Bacteria , 1998, Current Microbiology.

[32]  J. D. de Bont,et al.  Effect of compatible solutes on survival of lactic Acid bacteria subjected to drying , 1996, Applied and environmental microbiology.

[33]  B. Lentz,et al.  Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. , 1993, Chemistry and physics of lipids.

[34]  B. Lentz,et al.  Membrane “fluidity” as detected by diphenylhexatriene probes , 1989 .

[35]  I. Goldberg,et al.  Stability of Lactic Acid Bacteria to Freezing as Related to Their Fatty Acid Composition , 1977, Applied and environmental microbiology.

[36]  S. Gilliland,et al.  Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. , 1974, Applied microbiology.

[37]  S. Gilliland,et al.  Death of Lactobacillus bulgaricus Resulting from Liquid Nitrogen Freezing. , 1972, Applied microbiology.

[38]  P. Mazur,et al.  A two-factor hypothesis of freezing injury. Evidence from Chinese hamster tissue-culture cells. , 1972, Experimental cell research.

[39]  J. Veerkamp,et al.  Comparison of the Phospholipid Composition of Bifidobacterium and Lactobacillus Strains , 1971, Journal of bacteriology.

[40]  M. Réfrégiers,et al.  Synchrotron UV fluorescence microscopy for determining membrane fluidity modification of single bacteria with temperatures , 2014 .

[41]  G. Corrieu,et al.  Improvement of cryopreservation of Lactobacillus delbrueckii subsp. bulgaricus CFL1 with additives displaying different protective effects , 2003 .

[42]  Joseph R. Lakowicz,et al.  Instrumentation for Fluorescence Spectroscopy , 1983 .