Graph signal interpolation and extrapolation over manifold of Gaussian mixture

[1]  E. Isufi,et al.  Learning Expanding Graphs for Signal Interpolation , 2022, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  N. Vayatis,et al.  Non-smooth interpolation of graph signals , 2022, Signal Process..

[3]  Wolfgang Erb,et al.  Graph signal interpolation with Positive Definite Graph Basis Functions , 2019, Applied and Computational Harmonic Analysis.

[4]  Yonina C. Eldar,et al.  Geolocation with Graph-Based Model Fitting , 2019, 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[5]  Antonio Ortega,et al.  Fast Graph Fourier Transforms Based on Graph Symmetry and Bipartition , 2019, IEEE Transactions on Signal Processing.

[6]  Georgios B. Giannakis,et al.  Online Graph-Adaptive Learning With Scalability and Privacy , 2018, IEEE Transactions on Signal Processing.

[7]  Georgios B. Giannakis,et al.  Matrix Completion and Extrapolation via Kernel Regression , 2018, IEEE Transactions on Signal Processing.

[8]  Jing Liao,et al.  Non-Intrusive Load Disaggregation Using Graph Signal Processing , 2018, IEEE Transactions on Smart Grid.

[9]  Yonina C. Eldar,et al.  The Nystrom Extension for Signals Defined on a Graph , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Pierre Vandergheynst,et al.  Graph Signal Processing: Overview, Challenges, and Applications , 2017, Proceedings of the IEEE.

[11]  Georgios B. Giannakis,et al.  Kernel-based Inference of Functions over Graphs , 2017, ArXiv.

[12]  Peter Händel,et al.  Predicting Graph Signals Using Kernel Regression Where the Input Signal is Agnostic to a Graph , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[13]  Gene Cheung,et al.  Graph-Based Joint Signal/Power Restoration for Energy Harvesting Wireless Sensor Networks , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[14]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[15]  Georgios B. Giannakis,et al.  Kernel-Based Reconstruction of Graph Signals , 2016, IEEE Transactions on Signal Processing.

[16]  Alessandra Menafoglio,et al.  Kriging for Hilbert-space valued random fields: The operatorial point of view , 2016, J. Multivar. Anal..

[17]  Vassilis Kalofolias,et al.  How to Learn a Graph from Smooth Signals , 2016, AISTATS.

[18]  Israel Cohen,et al.  Embedding and function extension on directed graph , 2015, Signal Process..

[19]  Carmeline J. Dsilva,et al.  Parsimonious Representation of Nonlinear Dynamical Systems Through Manifold Learning: A Chemotaxis Case Study , 2015, 1505.06118.

[20]  Jelena Kovacevic,et al.  Discrete Signal Processing on Graphs: Sampling Theory , 2015, IEEE Transactions on Signal Processing.

[21]  Israel Cohen,et al.  Out-of-sample extension of band-limited functions on homogeneous manifolds using diffusion maps , 2015, Signal Process..

[22]  José M. F. Moura,et al.  Signal Recovery on Graphs: Variation Minimization , 2014, IEEE Transactions on Signal Processing.

[23]  Muhammad Tayyab Asif,et al.  Wavelets on graphs with application to transportation networks , 2014, 17th International IEEE Conference on Intelligent Transportation Systems (ITSC).

[24]  Pascal Frossard,et al.  Learning Laplacian Matrix in Smooth Graph Signal Representations , 2014, IEEE Transactions on Signal Processing.

[25]  Antonio Ortega,et al.  Active semi-supervised learning using sampling theory for graph signals , 2014, KDD.

[26]  Pierre Vandergheynst,et al.  A Multiscale Pyramid Transform for Graph Signals , 2013, IEEE Transactions on Signal Processing.

[27]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs: Frequency Analysis , 2013, IEEE Transactions on Signal Processing.

[28]  Oliver Kramer,et al.  Dimensionality Reduction with Unsupervised Nearest Neighbors , 2013, Intelligent Systems Reference Library.

[29]  Sunil K. Narang,et al.  Signal processing techniques for interpolation in graph structured data , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  José M. F. Moura,et al.  Discrete signal processing on graphs: Graph fourier transform , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  José M. F. Moura,et al.  Discrete signal processing on graphs: Graph filters , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[32]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[33]  José M. F. Moura,et al.  Discrete Signal Processing on Graphs , 2012, IEEE Transactions on Signal Processing.

[34]  Tao Jiang,et al.  Refining Gaussian mixture model based on enhanced manifold learning , 2012, Neurocomputing.

[35]  Hujun Bao,et al.  Laplacian Regularized Gaussian Mixture Model for Data Clustering , 2011, IEEE Transactions on Knowledge and Data Engineering.

[36]  Deng Cai,et al.  Gaussian Mixture Model with Local Consistency , 2010, AAAI.

[37]  Claude Manté,et al.  Cokriging for spatial functional data , 2010, J. Multivar. Anal..

[38]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[39]  Isaac Z. Pesenson,et al.  Variational Splines and Paley–Wiener Spaces on Combinatorial Graphs , 2009, ArXiv.

[40]  Mikhail Belkin,et al.  Data spectroscopy: learning mixture models using eigenspaces of convolution operators , 2008, ICML '08.

[41]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[42]  P. Niyogi,et al.  Convergence of Laplacian Eigenmaps , 2006, NIPS.

[43]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[44]  A. Singer From graph to manifold Laplacian: The convergence rate , 2006 .

[45]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[46]  Hsinchun Chen,et al.  A graph-based recommender system for digital library , 2002, JCDL '02.

[47]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[48]  Christopher K. I. Williams,et al.  The Effect of the Input Density Distribution on Kernel-based Classifiers , 2000, ICML.

[49]  Christopher K. I. Williams,et al.  Gaussian regression and optimal finite dimensional linear models , 1997 .

[50]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[51]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[52]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[53]  Vinay Chakravarthi Gogineni,et al.  Kernel Regression Over Graphs Using Random Fourier Features , 2022, IEEE Transactions on Signal Processing.

[54]  L. Farina,et al.  Protein-Protein Interaction Prediction via Graph Signal Processing , 2021, IEEE Access.

[55]  Michael I. Jordan,et al.  AUTO-ENCODING VARIATIONAL BAYES , 2020 .

[56]  Y. Sawano,et al.  Fundamental Properties of RKHS , 2016 .

[57]  Varun Chandola,et al.  Analyzing Big Spatial and Big Spatiotemporal Data: A Case Study of Methods and Applications , 2015 .

[58]  Alessandra Menafoglio,et al.  A Universal Kriging predictor for spatially dependent functional data of a Hilbert Space , 2013 .

[59]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[60]  Beyond—bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[61]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  M. A. Kaashoek,et al.  Spectral Theory of Integral Operators , 2003 .