Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the human brain: Results from the UK7T study

[1]  Richard G. Wise,et al.  Multi-site harmonization of 7 tesla MRI neuroimaging protocols , 2019, NeuroImage.

[2]  Rüdiger Stirnberg,et al.  Whole‐brain B1‐mapping using three‐dimensional DREAM , 2019, Magnetic resonance in medicine.

[3]  Vijay K. Venkatraman,et al.  Clinical Integration of Automated Processing for Brain Quantitative Susceptibility Mapping: Multi‐Site Reproducibility and Single‐Site Robustness , 2019, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[4]  Oliver Speck,et al.  European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND) , 2019, Alzheimer's & dementia.

[5]  M. Does,et al.  Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology , 2019, Trends in Neurosciences.

[6]  Yi Wang,et al.  3D texture analyses within the substantia nigra of Parkinson's disease patients on quantitative susceptibility maps and R2∗ maps , 2019, NeuroImage.

[7]  D. Harrison,et al.  The impact of coregistration of gradient recalled echo images on quantitative susceptibility and R2* mapping at 7T , 2019, bioRxiv.

[8]  Shonit Punwani,et al.  The effect of low resolution and coverage on the accuracy of susceptibility mapping , 2018, Magnetic resonance in medicine.

[9]  Oliver Speck,et al.  A robust multi-scale approach to quantitative susceptibility mapping , 2018, NeuroImage.

[10]  Steffen Bollmann,et al.  The challenge of bias‐free coil combination for quantitative susceptibility mapping at ultra‐high field , 2018, Magnetic resonance in medicine.

[11]  Mauro Costagli,et al.  The impact of white matter fiber orientation in single‐acquisition quantitative susceptibility mapping , 2017, NMR in biomedicine.

[12]  Li Guo,et al.  Quantitative susceptibility mapping: Report from the 2016 reconstruction challenge , 2017, Magnetic resonance in medicine.

[13]  Mark E Ladd,et al.  Suitable reference tissues for quantitative susceptibility mapping of the brain , 2017, Magnetic resonance in medicine.

[14]  Andreas Deistung,et al.  Quantitative susceptibility mapping (QSM) and R2* in the human brain at 3T: Evaluation of intra-scanner repeatability. , 2017, Zeitschrift fur medizinische Physik.

[15]  S. Lehéricy,et al.  Reproducibility of R2* and quantitative susceptibility mapping (QSM) reconstruction methods in the basal ganglia of healthy subjects , 2017, NMR in biomedicine.

[16]  Yi Wang,et al.  The clinical utility of QSM: disease diagnosis, medical management, and surgical planning , 2017, NMR in biomedicine.

[17]  Wei Li,et al.  Susceptibility tensor imaging (STI) of the brain , 2017, NMR in biomedicine.

[18]  A H Wilman,et al.  Structural and functional quantitative susceptibility mapping from standard fMRI studies , 2017, NMR in biomedicine.

[19]  Nian Wang,et al.  Exploring the origins of echo-time-dependent quantitative susceptibility mapping (QSM) measurements in healthy tissue and cerebral microbleeds , 2017, NeuroImage.

[20]  B. Forstmann,et al.  Effects of aging on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1}$$\end{document}T1, \documentclass[12pt]{mini , 2017, Brain Structure and Function.

[21]  Anne C. Trutti,et al.  Effects of aging on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{1}$$\end{document}T1, \documentclass[12pt]{mini , 2017, Brain Structure and Function.

[22]  Viktor Vegh,et al.  Selective channel combination of MRI signal phase , 2016, Magnetic resonance in medicine.

[23]  José P. Marques,et al.  An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping , 2016, NMR in biomedicine.

[24]  Ferdinand Schweser,et al.  Quantitative Susceptibility Mapping in Parkinson's Disease , 2016, PloS one.

[25]  Julio Acosta-Cabronero,et al.  High-resolution characterization of the aging brain using simultaneous quantitative susceptibility mapping ( QSM ) and R 2 * measurements at 7 Tesla , 2016 .

[26]  Klaus Scheffler,et al.  Signal‐to‐noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays , 2016, Magnetic resonance in medicine.

[27]  Julio Acosta-Cabronero,et al.  In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan , 2016, The Journal of Neuroscience.

[28]  Dana Cobzas,et al.  Subcortical gray matter segmentation and voxel‐based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis , 2015, Journal of magnetic resonance imaging : JMRI.

[29]  Pascal Spincemaille,et al.  Reproducibility of quantitative susceptibility mapping in the brain at two field strengths from two vendors , 2015, Journal of magnetic resonance imaging : JMRI.

[30]  Tsutomu Okada,et al.  Quantitative Susceptibility Mapping at 3 T and 1.5 T: Evaluation of Consistency and Reproducibility , 2015, Investigative radiology.

[31]  R. Bowtell,et al.  Increase in the iron content of the substantia nigra and red nucleus in multiple sclerosis and clinically isolated syndrome: A 7 Tesla MRI study , 2015, Journal of magnetic resonance imaging : JMRI.

[32]  P-Y Lin,et al.  Quantitative Susceptibility Mapping of Human Brain at 3T: A Multisite Reproducibility Study , 2015, American Journal of Neuroradiology.

[33]  C. Salmon,et al.  Susceptibility weighted imaging: differentiating between calcification and hemosiderin* , 2015 .

[34]  Fang Dong,et al.  Algorithm for fast monoexponential fitting based on Auto‐Regression on Linear Operations (ARLO) of data , 2015, Magnetic resonance in medicine.

[35]  Yi Wang,et al.  Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker , 2014, Magnetic resonance in medicine.

[36]  Yi Wang,et al.  Background field removal by solving the Laplacian boundary value problem , 2014, NMR in biomedicine.

[37]  Guy B. Williams,et al.  In Vivo Quantitative Susceptibility Mapping (QSM) in Alzheimer's Disease , 2013, PloS one.

[38]  Robert Turner,et al.  High-Resolution MR Imaging of the Human Brainstem In vivo at 7 Tesla , 2013, Front. Hum. Neurosci..

[39]  Ferdinand Schweser,et al.  Toward online reconstruction of quantitative susceptibility maps: Superfast dipole inversion , 2013, Magnetic resonance in medicine.

[40]  Pascal Spincemaille,et al.  Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping , 2013, Magnetic resonance in medicine.

[41]  Peter Börnert,et al.  DREAM—a novel approach for robust, ultrafast, multislice B1 mapping , 2012, Magnetic resonance in medicine.

[42]  Ferdinand Schweser,et al.  Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study , 2012, NeuroImage.

[43]  Jürgen R. Reichenbach,et al.  The future of susceptibility contrast for assessment of anatomy and function , 2012, NeuroImage.

[44]  Yuehui Tao,et al.  A systematic review of the utility of 1.5 versus 3 Tesla magnetic resonance brain imaging in clinical practice and research , 2012, European Radiology.

[45]  Jeff H. Duyn,et al.  The contribution of myelin to magnetic susceptibility-weighted contrasts in high-field MRI of the brain , 2012, NeuroImage.

[46]  Yi Wang,et al.  Morphology enabled dipole inversion for quantitative susceptibility mapping using structural consistency between the magnitude image and the susceptibility map , 2012, NeuroImage.

[47]  Andreas Schäfer,et al.  High resolution magnetic susceptibility mapping of the substantia nigra in Parkinson's disease , 2012, Journal of magnetic resonance imaging : JMRI.

[48]  Torsten Rohlfing,et al.  MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping , 2011, NeuroImage.

[49]  Ferdinand Schweser,et al.  Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: An approach to in vivo brain iron metabolism? , 2011, NeuroImage.

[50]  Richard Bowtell,et al.  Whole-brain susceptibility mapping at high field: A comparison of multiple- and single-orientation methods , 2010, NeuroImage.

[51]  S. Ropele,et al.  Quantitative MR imaging of brain iron: a postmortem validation study. , 2010, Radiology.

[52]  Chunlei Liu Susceptibility tensor imaging , 2010, Magnetic resonance in medicine.

[53]  Xiangyu Yang,et al.  Postprocessing correction for distortions in T2* decay caused by quadratic cross‐slice B0 inhomogeneity , 2010, Magnetic resonance in medicine.

[54]  Yi Wang,et al.  Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: Validation and application to brain imaging , 2010, Magnetic resonance in medicine.

[55]  D. Yablonskiy,et al.  Biophysical mechanisms of phase contrast in gradient echo MRI , 2009, Proceedings of the National Academy of Sciences.

[56]  J. Connor,et al.  Iron, the substantia nigra and related neurological disorders. , 2009, Biochimica et biophysica acta.

[57]  Yu-Chung N. Cheng,et al.  Limitations of calculating field distributions and magnetic susceptibilities in MRI using a Fourier based method , 2009, Physics in medicine and biology.

[58]  Jeff H. Duyn,et al.  Susceptibility contrast in high field MRI of human brain as a function of tissue iron content , 2009, NeuroImage.

[59]  Francis Lilley,et al.  Fast and robust three-dimensional best path phase unwrapping algorithm. , 2007, Applied optics.

[60]  Jeff H. Duyn,et al.  High-field MRI of brain cortical substructure based on signal phase , 2007, Proceedings of the National Academy of Sciences.

[61]  T. Montine,et al.  Correlation of proton transverse relaxation rates (R2) with iron concentrations in postmortem brain tissue from alzheimer's disease patients , 2007, Magnetic resonance in medicine.

[62]  Jeff H. Duyn,et al.  Extensive heterogeneity in white matter intensity in high-resolution T2 *-weighted MRI of the human brain at 7.0 T , 2006, NeuroImage.

[63]  David Burton,et al.  Fast three-dimensional phase-unwrapping algorithm based on sorting by reliability following a non-continuous path , 2005, SPIE Optical Metrology.

[64]  J. Weir Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. , 2005, Journal of strength and conditioning research.

[65]  John S Leigh,et al.  Quantifying arbitrary magnetic susceptibility distributions with MR , 2004, Magnetic resonance in medicine.

[66]  Petra Schmalbrock,et al.  Enhanced gray and white matter contrast of phase susceptibility‐weighted images in ultra‐high‐field magnetic resonance imaging , 2003, Journal of magnetic resonance imaging : JMRI.

[67]  S. Chavez,et al.  Understanding phase maps in MRI: a new cutline phase unwrapping method , 2002, IEEE Transactions on Medical Imaging.

[68]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[69]  R. Jordan,et al.  A systematic review of the utility of electrodiagnostic testing in carpal tunnel syndrome. , 2002, The British journal of general practice : the journal of the Royal College of General Practitioners.

[70]  A. Pfefferbaum,et al.  Differential rates of regional brain change in callosal and ventricular size: a 4-year longitudinal MRI study of elderly men. , 2002, Cerebral cortex.

[71]  D. Louis Collins,et al.  Use of Registration for Cohort Studies , 2001 .

[72]  J. R. Reichenbach,et al.  High-resolution blood oxygen-level dependent MR venography (HRBV): a new technique , 2001, Neuroradiology.

[73]  A. Shmuel,et al.  Imaging brain function in humans at 7 Tesla , 2001, Magnetic resonance in medicine.

[74]  D. O. Walsh,et al.  Adaptive reconstruction of phased array MR imagery , 2000, Magnetic resonance in medicine.

[75]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[76]  R A Knight,et al.  MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. , 1999, Radiology.

[77]  A. Berkowitz,et al.  MAGNETIC HYSTERESIS ANOMALIES IN FERRITIN , 1997 .

[78]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[79]  P. Roemer,et al.  The NMR phased array , 1990, Magnetic resonance in medicine.

[80]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[81]  William Thomas Clarke,et al.  UK7T Network harmonized neuroimaging protocols , 2018 .

[82]  Telman,et al.  UvA-DARE (Digital Academic Effects of aging on T1, T∗2, and QSM MRI values in the subcortex , 2017 .

[83]  Telman,et al.  UvA-DARE ( Digital Academic Repository ) Effects of aging on T 1 , T ∗ 2 , and QSM MRI values in the subcortex , 2017 .

[84]  村上優,et al.  パーキンソン病の診断におけるquantitative susceptibility mapping(QSM)の有用性 , 2016 .

[85]  Diana Khabipova,et al.  Quantitative Susceptibility Mapping in the Human Brain , 2016 .

[86]  E. Haacke,et al.  Quantitative susceptibility mapping: current status and future directions. , 2015, Magnetic resonance imaging.

[87]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[88]  E. Haacke,et al.  Imaging iron stores in the brain using magnetic resonance imaging. , 2005, Magnetic resonance imaging.

[89]  P. Ronning Clinical integration. , 1995, Hospital technology series.