Fast solution of sparse linear systems with adaptive choice of preconditioners. (Résolution rapide de systèmes linéaires creux avec choix adaptatif de préconditionneurs)

This thesis analyzes the use of adaptive preconditioned Krylov methods in applications which can be modeled by partial differential equations. Preconditioning is generally essential for efficiently solving large sparse nonlinear systems of equations. However, the optimality of the available preconditioners is not guaranteed for all uses due to the changing nature of the linearized operator. This thesis explores some types of preconditioners and solve procedures that can adapt to the complexity of linear systems using information from a posteriori error estimates. First, we propose global and local adaptive strategies based on a posteriori error estimation and a hybrid block-jacobi and ILU(0) preconditioner. Second, the a posteriori error estimation is used to partition the matrix, and a Schur complement-based approach is used for the preconditioning of the block with a high error. Then, we introduce a variant of this latter approach which replaces the costly exact factorizations by low-rank approximations. We also define an adaptive preconditioner based on a posteriori error estimation that allows to control a local algebraic error norm. Finally, we prove the efficiency of our adaptive strategies on two-dimensional reservoir simulation examples for heterogeneous porous media.

[1]  Frédéric Nataf,et al.  Low frequency tangential filtering decomposition , 2007, Numer. Linear Algebra Appl..

[2]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[3]  Victorita Dolean,et al.  An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .

[4]  Peter Gottschling,et al.  Survey on Efficient Linear Solvers for Porous Media Flow Models on Recent Hardware Architectures , 2014 .

[5]  Martin Vohralík,et al.  A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with p-Robust Behavior , 2020, SIAM J. Numer. Anal..

[6]  A. Griewank,et al.  Approximate inverse preconditionings for sparse linear systems , 1992 .

[7]  James Demmel,et al.  Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting , 2018, SIAM J. Sci. Comput..

[8]  Ullrich Rüde Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .

[9]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[10]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[11]  Mary F. Wheeler,et al.  Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS) , 2001, Numer. Linear Algebra Appl..

[12]  Guillaume Alléon,et al.  Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics , 1997, Numerical Algorithms.

[13]  N. Gould,et al.  Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  Daniel Loghin,et al.  Stopping Criteria for Adaptive Finite Element Solvers , 2013, SIAM J. Sci. Comput..

[16]  R. P. Kendall,et al.  Constrained Residual Acceleration of Conjugate Residual Methods , 1985 .

[17]  William Gropp,et al.  A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.

[18]  Mark Embree,et al.  The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..

[19]  T. Huckle Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .

[20]  Gene H. Golub,et al.  Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.

[21]  A. Turing ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .

[22]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[23]  Sophie Moufawad,et al.  Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communication , 2014 .

[24]  B. Eng,et al.  The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear Equations , 2005 .

[25]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[26]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[27]  Masha Sosonkina,et al.  pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..

[28]  Yair Shapira,et al.  Model case analysis of an algebraic multilevel method , 1999, Numer. Linear Algebra Appl..

[29]  L. K. Hansen,et al.  Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[30]  Béatrice Rivière,et al.  Computational methods for multiphase flows in porous media , 2007, Math. Comput..

[31]  O. Nevanlinna,et al.  Accelerating with rank-one updates , 1989 .

[32]  Ju Liu,et al.  A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning , 2018, J. Comput. Phys..

[33]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[34]  Pascal Frey,et al.  Anisotropic mesh adaptation for CFD computations , 2005 .

[35]  Martin Vohralík,et al.  Estimating and localizing the algebraic and total numerical errors using flux reconstructions , 2018, Numerische Mathematik.

[36]  Achi Brandt,et al.  Local mesh refinement multilevel techniques , 1987 .

[37]  Martin Vohralík,et al.  Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers , 2020, J. Comput. Appl. Math..

[38]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[39]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[40]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[41]  G. Miel,et al.  On a posteriori error estimates , 1977 .

[42]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[43]  Yvan Notay,et al.  Optimal v-cycle algebraic multilevel preconditioning , 1998, Numer. Linear Algebra Appl..

[44]  Edmond Chow,et al.  Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..

[45]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[46]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[47]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[48]  Martin Vohralík,et al.  A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows , 2017 .

[49]  Gene H. Golub,et al.  Estimates in quadratic formulas , 1994, Numerical Algorithms.

[50]  Nicholas J. Higham,et al.  INVERSE PROBLEMS NEWSLETTER , 1991 .

[51]  Bo Lu,et al.  Algebraic Multigrid Methods (AMG) for the Efficient Solution of Fully Implicit Formulations in Reservoir Simulation , 2007 .

[52]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[53]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[54]  James Demmel,et al.  Brief announcement: Lower bounds on communication for sparse Cholesky factorization of a model problem , 2010, SPAA '10.

[55]  Y. Saad,et al.  Numerical solution of large nonsymmetric eigenvalue problems , 1989 .

[56]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[57]  Miroslav Tůma,et al.  The importance of structure in incomplete factorization preconditioners , 2011 .

[58]  Yousef Saad,et al.  Schur complement‐based domain decomposition preconditioners with low‐rank corrections , 2015, Numer. Linear Algebra Appl..

[59]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[60]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[61]  Jean-Marc Gratien,et al.  Will GPGPUs be Finally a Credible Solution for Industrial Reservoir Simulators , 2015, ANSS 2015.

[62]  Yuhong Dai,et al.  Study on semi‐conjugate direction methods for non‐symmetric systems , 2004 .

[63]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[64]  William Gropp,et al.  PETSc Users Manual Revision 3.4 , 2016 .

[65]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[66]  Aziz S. Odeh,et al.  Comparison of Solutions to a Three-Dimensional Black-Oil Reservoir Simulation Problem , 1981 .

[67]  Victor Eijkhout Overview of Iterative Linear System Solver Packages , 1998 .

[68]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[69]  Erik G. Boman,et al.  A nested dissection approach to sparse matrix partitioning for parallel computations. , 2008 .

[70]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[71]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[72]  Martin Vohralík,et al.  Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..

[73]  Hua Xiang,et al.  Algebraic Domain Decomposition Methods for Highly Heterogeneous Problems , 2013, SIAM J. Sci. Comput..

[74]  O. Widlund Domain Decomposition Algorithms , 1993 .

[75]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[76]  G. W. Stewart,et al.  A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..

[77]  D. Bartuschat Algebraic Multigrid , 2007 .

[78]  Igor E. Kaporin,et al.  New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[79]  David R. Kincaid,et al.  Numerical mathematics and computing , 1980 .

[80]  Dirk Praetorius,et al.  Adaptive Vertex-Centered Finite Volume Methods with Convergence Rates , 2016, SIAM J. Numer. Anal..

[81]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[82]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[83]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[84]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[85]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[86]  Martin Vohralík,et al.  Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.

[87]  Frédéric Gibou,et al.  On the performance of a simple parallel implementation of the ILU-PCG for the Poisson equation on irregular domains , 2012, J. Comput. Phys..

[88]  Claes Johnson,et al.  Adaptive error control for multigrid finite element , 1995, Computing.

[89]  Martin Vohralík,et al.  A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..

[90]  Laura Grigori,et al.  Robust algebraic Schur complement preconditioners based on low rank corrections , 2014 .

[91]  Krzysztof Boryczko,et al.  A Parallel Preconditioning for the Nonlinear Stokes Problem , 2005, PPAM.

[92]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[93]  Martin Vohralík,et al.  Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation , 2017 .

[94]  Stanley C. Eisenstat,et al.  A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..

[95]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[96]  William Gropp,et al.  Domain decomposition on parallel computers , 1989, IMPACT Comput. Sci. Eng..

[97]  Ude Fully Adaptive Multigrid Methods , 1993 .

[98]  Edmond Chow,et al.  Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..

[99]  Rolf Rannacher,et al.  Goal-oriented error control of the iterative solution of finite element equations , 2009, J. Num. Math..

[100]  Jan Mandel,et al.  On block diagonal and Schur complement preconditioning , 1990 .

[101]  V. Strassen Gaussian elimination is not optimal , 1969 .

[102]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.

[103]  Xin Dong,et al.  A Bit-Compatible Parallelization for ILU(k) Preconditioning , 2008, Euro-Par.

[104]  Masha Sosonkina,et al.  Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[105]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[106]  Bounds for eigenvalues of symmetric block Jacobi scaled matrices , 1996 .

[107]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[108]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[109]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[110]  M. Arioli,et al.  Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .

[111]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[112]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[113]  Jörg Liesen,et al.  Convergence analysis of Krylov subspace methods , 2004 .

[114]  D. Sorensen IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .

[115]  Frédéric Nataf,et al.  High performance domain decomposition methods on massively parallel architectures with freefem++ , 2012, J. Num. Math..

[116]  J. Cuppen A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .

[117]  Long Chen FINITE VOLUME METHODS , 2011 .

[118]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[119]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[120]  Hamdi A. Tchelepi,et al.  Parallel Scalable Unstructured CPR-Type Linear Solver for Reservoir Simulation , 2005 .

[121]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[122]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[123]  Mark Ainsworth,et al.  A Synthesis of A Posteriori Error Estimation Techniques for Conforming , Non-Conforming and Discontinuous Galerkin Finite Element Methods , 2005 .

[124]  E. S. Coakley,et al.  A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices , 2013 .

[125]  J. G. Lewis,et al.  A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..

[126]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[127]  Robert Scheichl,et al.  Decoupling and Block Preconditioning for Sedimentary Basin Simulations , 2003 .

[128]  André-Louis Cholesky,et al.  Sur la résolution numérique des systèmes d’équations linéaires , 2005 .

[129]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[130]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[131]  Owe Axelsson,et al.  Optimizing Two-Level Preconditionings for the Conjugate Gradient Method , 2001, LSSC.

[132]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[133]  Z. Strakos,et al.  Distribution of the discretization and algebraic error in numerical solution of partial differential equations , 2014 .

[134]  Carlos F. Borges,et al.  A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .

[135]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[136]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .