Fast solution of sparse linear systems with adaptive choice of preconditioners. (Résolution rapide de systèmes linéaires creux avec choix adaptatif de préconditionneurs)
暂无分享,去创建一个
[1] Frédéric Nataf,et al. Low frequency tangential filtering decomposition , 2007, Numer. Linear Algebra Appl..
[2] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[3] Victorita Dolean,et al. An introduction to domain decomposition methods - algorithms, theory, and parallel implementation , 2015 .
[4] Peter Gottschling,et al. Survey on Efficient Linear Solvers for Porous Media Flow Models on Recent Hardware Architectures , 2014 .
[5] Martin Vohralík,et al. A Multilevel Algebraic Error Estimator and the Corresponding Iterative Solver with p-Robust Behavior , 2020, SIAM J. Numer. Anal..
[6] A. Griewank,et al. Approximate inverse preconditionings for sparse linear systems , 1992 .
[7] James Demmel,et al. Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting , 2018, SIAM J. Sci. Comput..
[8] Ullrich Rüde. Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .
[9] François Le Gall,et al. Powers of tensors and fast matrix multiplication , 2014, ISSAC.
[10] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..
[11] Mary F. Wheeler,et al. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS) , 2001, Numer. Linear Algebra Appl..
[12] Guillaume Alléon,et al. Sparse approximate inverse preconditioning for dense linear systems arising in computational electromagnetics , 1997, Numerical Algorithms.
[13] N. Gould,et al. Sparse Approximate-Inverse Preconditioners Using Norm-Minimization Techniques , 1998, SIAM J. Sci. Comput..
[14] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[15] Daniel Loghin,et al. Stopping Criteria for Adaptive Finite Element Solvers , 2013, SIAM J. Sci. Comput..
[16] R. P. Kendall,et al. Constrained Residual Acceleration of Conjugate Residual Methods , 1985 .
[17] William Gropp,et al. A comparison of domain decomposition techniques for elliptic partial differential equations and their parallel implementation , 1985, PP.
[18] Mark Embree,et al. The Tortoise and the Hare Restart GMRES , 2003, SIAM Rev..
[19] T. Huckle. Approximate sparsity patterns for the inverse of a matrix and preconditioning , 1999 .
[20] Gene H. Golub,et al. Numerical methods for solving linear least squares problems , 1965, Milestones in Matrix Computation.
[21] A. Turing. ROUNDING-OFF ERRORS IN MATRIX PROCESSES , 1948 .
[22] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[23] Sophie Moufawad,et al. Enlarged Krylov Subspace Methods and Preconditioners for Avoiding Communication , 2014 .
[24] B. Eng,et al. The Use of Parallel Polynomial Preconditioners in the Solution of Systems of Linear Equations , 2005 .
[25] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[26] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[27] Masha Sosonkina,et al. pARMS: a parallel version of the algebraic recursive multilevel solver , 2003, Numer. Linear Algebra Appl..
[28] Yair Shapira,et al. Model case analysis of an algebraic multilevel method , 1999, Numer. Linear Algebra Appl..
[29] L. K. Hansen,et al. Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.
[30] Béatrice Rivière,et al. Computational methods for multiphase flows in porous media , 2007, Math. Comput..
[31] O. Nevanlinna,et al. Accelerating with rank-one updates , 1989 .
[32] Ju Liu,et al. A robust and efficient iterative method for hyper-elastodynamics with nested block preconditioning , 2018, J. Comput. Phys..
[33] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[34] Pascal Frey,et al. Anisotropic mesh adaptation for CFD computations , 2005 .
[35] Martin Vohralík,et al. Estimating and localizing the algebraic and total numerical errors using flux reconstructions , 2018, Numerische Mathematik.
[36] Achi Brandt,et al. Local mesh refinement multilevel techniques , 1987 .
[37] Martin Vohralík,et al. Goal-oriented a posteriori error estimation for conforming and nonconforming approximations with inexact solvers , 2020, J. Comput. Appl. Math..
[38] M. Benzi,et al. A comparative study of sparse approximate inverse preconditioners , 1999 .
[39] Fuzhen Zhang. The Schur complement and its applications , 2005 .
[40] J. Oden,et al. A Posteriori Error Estimation in Finite Element Analysis , 2000 .
[41] G. Miel,et al. On a posteriori error estimates , 1977 .
[42] Pierre Ladevèze,et al. Error Estimate Procedure in the Finite Element Method and Applications , 1983 .
[43] Yvan Notay,et al. Optimal v-cycle algebraic multilevel preconditioning , 1998, Numer. Linear Algebra Appl..
[44] Edmond Chow,et al. Approximate Inverse Preconditioners via Sparse-Sparse Iterations , 1998, SIAM J. Sci. Comput..
[45] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[46] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[47] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[48] Martin Vohralík,et al. A simple a posteriori estimate on general polytopal meshes with applications to complex porous media flows , 2017 .
[49] Gene H. Golub,et al. Estimates in quadratic formulas , 1994, Numerical Algorithms.
[50] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[51] Bo Lu,et al. Algebraic Multigrid Methods (AMG) for the Efficient Solution of Fully Implicit Formulations in Reservoir Simulation , 2007 .
[52] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[53] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[54] James Demmel,et al. Brief announcement: Lower bounds on communication for sparse Cholesky factorization of a model problem , 2010, SPAA '10.
[55] Y. Saad,et al. Numerical solution of large nonsymmetric eigenvalue problems , 1989 .
[56] George Karypis,et al. Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..
[57] Miroslav Tůma,et al. The importance of structure in incomplete factorization preconditioners , 2011 .
[58] Yousef Saad,et al. Schur complement‐based domain decomposition preconditioners with low‐rank corrections , 2015, Numer. Linear Algebra Appl..
[59] Xiao-Chuan Cai,et al. A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[60] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[61] Jean-Marc Gratien,et al. Will GPGPUs be Finally a Credible Solution for Industrial Reservoir Simulators , 2015, ANSS 2015.
[62] Yuhong Dai,et al. Study on semi‐conjugate direction methods for non‐symmetric systems , 2004 .
[63] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[64] William Gropp,et al. PETSc Users Manual Revision 3.4 , 2016 .
[65] Andrew J. Wathen,et al. Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.
[66] Aziz S. Odeh,et al. Comparison of Solutions to a Three-Dimensional Black-Oil Reservoir Simulation Problem , 1981 .
[67] Victor Eijkhout. Overview of Iterative Linear System Solver Packages , 1998 .
[68] Randolph E. Bank,et al. A posteriori error estimates based on hierarchical bases , 1993 .
[69] Erik G. Boman,et al. A nested dissection approach to sparse matrix partitioning for parallel computations. , 2008 .
[70] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[71] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[72] Martin Vohralík,et al. Adaptive Inexact Newton Methods with A Posteriori Stopping Criteria for Nonlinear Diffusion PDEs , 2013, SIAM J. Sci. Comput..
[73] Hua Xiang,et al. Algebraic Domain Decomposition Methods for Highly Heterogeneous Problems , 2013, SIAM J. Sci. Comput..
[74] O. Widlund. Domain Decomposition Algorithms , 1993 .
[75] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[76] G. W. Stewart,et al. A Krylov-Schur Algorithm for Large Eigenproblems , 2001, SIAM J. Matrix Anal. Appl..
[77] D. Bartuschat. Algebraic Multigrid , 2007 .
[78] Igor E. Kaporin,et al. New convergence results and preconditioning strategies for the conjugate gradient method , 1994, Numer. Linear Algebra Appl..
[79] David R. Kincaid,et al. Numerical mathematics and computing , 1980 .
[80] Dirk Praetorius,et al. Adaptive Vertex-Centered Finite Volume Methods with Convergence Rates , 2016, SIAM J. Numer. Anal..
[81] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[82] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[83] Axel Ruhe,et al. The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .
[84] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[85] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[86] Martin Vohralík,et al. Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods , 2008, Numerische Mathematik.
[87] Frédéric Gibou,et al. On the performance of a simple parallel implementation of the ILU-PCG for the Poisson equation on irregular domains , 2012, J. Comput. Phys..
[88] Claes Johnson,et al. Adaptive error control for multigrid finite element , 1995, Computing.
[89] Martin Vohralík,et al. A posteriori error estimates, stopping criteria, and adaptivity for multiphase compositional Darcy flows in porous media , 2014, J. Comput. Phys..
[90] Laura Grigori,et al. Robust algebraic Schur complement preconditioners based on low rank corrections , 2014 .
[91] Krzysztof Boryczko,et al. A Parallel Preconditioning for the Nonlinear Stokes Problem , 2005, PPAM.
[92] Barbara I. Wohlmuth,et al. A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..
[93] Martin Vohralík,et al. Sharp algebraic and total a posteriori error bounds for h and p finite elements via a multilevel approach. Recovering mass balance in any situation , 2017 .
[94] Stanley C. Eisenstat,et al. A Divide-and-Conquer Algorithm for the Symmetric Tridiagonal Eigenproblem , 1995, SIAM J. Matrix Anal. Appl..
[95] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[96] William Gropp,et al. Domain decomposition on parallel computers , 1989, IMPACT Comput. Sci. Eng..
[97] Ude. Fully Adaptive Multigrid Methods , 1993 .
[98] Edmond Chow,et al. Fine-Grained Parallel Incomplete LU Factorization , 2015, SIAM J. Sci. Comput..
[99] Rolf Rannacher,et al. Goal-oriented error control of the iterative solution of finite element equations , 2009, J. Num. Math..
[100] Jan Mandel,et al. On block diagonal and Schur complement preconditioning , 1990 .
[101] V. Strassen. Gaussian elimination is not optimal , 1969 .
[102] Barbara Kaltenbacher,et al. Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.
[103] Xin Dong,et al. A Bit-Compatible Parallelization for ILU(k) Preconditioning , 2008, Euro-Par.
[104] Masha Sosonkina,et al. Distributed Schur Complement Techniques for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..
[105] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[106] Bounds for eigenvalues of symmetric block Jacobi scaled matrices , 1996 .
[107] Barry Smith,et al. Domain Decomposition Methods for Partial Differential Equations , 1997 .
[108] Wayne Joubert,et al. On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..
[109] William L. Briggs,et al. A multigrid tutorial , 1987 .
[110] M. Arioli,et al. Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems , 2013 .
[111] S. Repin. A Posteriori Estimates for Partial Differential Equations , 2008 .
[112] K. Stüben. Algebraic multigrid (AMG): experiences and comparisons , 1983 .
[113] Jörg Liesen,et al. Convergence analysis of Krylov subspace methods , 2004 .
[114] D. Sorensen. IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .
[115] Frédéric Nataf,et al. High performance domain decomposition methods on massively parallel architectures with freefem++ , 2012, J. Num. Math..
[116] J. Cuppen. A divide and conquer method for the symmetric tridiagonal eigenproblem , 1980 .
[117] Long Chen. FINITE VOLUME METHODS , 2011 .
[118] L. Kolotilina,et al. Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..
[119] Philipp Birken,et al. Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.
[120] Hamdi A. Tchelepi,et al. Parallel Scalable Unstructured CPR-Type Linear Solver for Reservoir Simulation , 2005 .
[121] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[122] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[123] Mark Ainsworth,et al. A Synthesis of A Posteriori Error Estimation Techniques for Conforming , Non-Conforming and Discontinuous Galerkin Finite Element Methods , 2005 .
[124] E. S. Coakley,et al. A fast divide-and-conquer algorithm for computing the spectra of real symmetric tridiagonal matrices , 2013 .
[125] J. G. Lewis,et al. A Shifted Block Lanczos Algorithm for Solving Sparse Symmetric Generalized Eigenproblems , 1994, SIAM J. Matrix Anal. Appl..
[126] Michael Andrew Christie,et al. Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .
[127] Robert Scheichl,et al. Decoupling and Block Preconditioning for Sedimentary Basin Simulations , 2003 .
[128] André-Louis Cholesky,et al. Sur la résolution numérique des systèmes d’équations linéaires , 2005 .
[129] Martin Vohralík,et al. Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..
[130] Martin Vohralík,et al. A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..
[131] Owe Axelsson,et al. Optimizing Two-Level Preconditionings for the Conjugate Gradient Method , 2001, LSSC.
[132] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[133] Z. Strakos,et al. Distribution of the discretization and algebraic error in numerical solution of partial differential equations , 2014 .
[134] Carlos F. Borges,et al. A Parallel Divide and Conquer Algorithm for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem , 1993 .
[135] Marcus J. Grote,et al. Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..
[136] O. C. Zienkiewicz,et al. A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .