Plasmonic effect of gold nanoparticles in organic solar cells

Abstract Light trapping, due to the embedding of metallic nanoparticles, has been shown to be beneficial for a better photoabsorption in organic solar cells. Researchers in plasmonics and in the organic photovoltaics fields are working together to improve the absorption of sunlight and the photon–electron coupling to boost the performance of the devices. Recent advances in the field of plasmonics for organic solar cells focus on the incorporation of gold nanoparticles. This article reviews the different methods to produce and embed gold nanoparticles into organic solar cells. In particular, concentration, size and geometry of gold nanoparticles are key factors that directly influence the light absorption in the devices. It is shown that a careful choice of size, concentration and location of gold nanoparticles in the device result in an enhancement of the power conversion efficiencies when compared to standard organic solar cell devices. Our latest results on gold nanoparticles embedded in on organic solar cell devices are included. We demonstrate that embedded gold nanoparticles, created by depositing and annealing a gold film on transparent electrode, generate a plasmonic effect which can be exploited to increase the power conversion efficiency of a bulk heterojunction solar cell up to 10%.

[1]  Mats Andersson,et al.  Photoluminescence quenching at a polythiophene/C-60 heterojunction , 2000 .

[2]  J. Luther,et al.  Enhanced photocurrent and stability of organic solar cells using solution-based NiO interfacial layer , 2012 .

[3]  Volker Wittwer,et al.  Diffraction gratings and buried nano-electrodes—architectures for organic solar cells , 2004 .

[4]  Christoph J. Brabec,et al.  Correlation Between Structural and Optical Properties of Composite Polymer/Fullerene Films for Organic Solar Cells , 2005 .

[5]  David L. Carroll,et al.  Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octylthiophene)/C60 bulk heterojunction photovoltaic devices , 2005 .

[6]  Dirk M. Guldi,et al.  Carbon nanotubes as integrative materials for organic photovoltaic devices , 2008 .

[7]  Iskandar Yahya,et al.  Hybrid carbon nanotube networks as efficient hole extraction layers for organic photovoltaics. , 2013, ACS nano.

[8]  Sang-Hyun Oh,et al.  Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells , 2008, LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[9]  Christoph J. Brabec,et al.  Solution-Processed Organic Solar Cells , 2008 .

[10]  Yang Yang,et al.  High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends , 2005 .

[11]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[12]  Yuri Lawryshyn,et al.  A model to determine financial indicators for organic solar cells , 2009 .

[13]  Jianwei Liang,et al.  Plasmon resonance enhanced optical absorption in inverted polymer/fullerene solar cells with metal nanoparticle-doped solution-processable TiO2 layer. , 2013, ACS applied materials & interfaces.

[14]  Hans-Joachim Egelhaaf,et al.  Reversible and irreversible degradation of organic solar cell performance by oxygen , 2011 .

[15]  Wei E. I. Sha,et al.  Improving the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers , 2011 .

[16]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[17]  Guowei Yang Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials , 2012 .

[18]  K. Jungjohann,et al.  Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts , 2013, Proceedings of the National Academy of Sciences.

[19]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[20]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[21]  Weimin Zhang,et al.  Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. , 2008, Journal of the American Chemical Society.

[22]  Ludovic Escoubas,et al.  Improving light absorption in organic solar cells by plasmonic contribution , 2009 .

[23]  A. Walker,et al.  Dynamical Monte Carlo modelling of organic solar cells: the dependence of internal quantum efficiency on morphology. , 2005, Nano letters.

[24]  H. Lyu,et al.  In situ-prepared composite materials of PEDOT: PSS buffer layer-metal nanoparticles and their application to organic solar cells , 2012, Nanoscale Research Letters.

[25]  Gang Li,et al.  Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. , 2009, Journal of the American Chemical Society.

[26]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[27]  Dehai Wu,et al.  Applications of carbon materials in photovoltaic solar cells , 2009 .

[28]  J. Grossman,et al.  Self-assembly and its impact on interfacial charge transfer in carbon nanotube/P3HT solar cells. , 2010, ACS nano.

[29]  C. Westgate,et al.  Stability of ITO Thin Film on Flexible Substrate Under Thermal Aging and Thermal Cycling Conditions , 2012, Journal of Display Technology.

[30]  Christoph J. Brabec,et al.  Organic tandem solar cells: A review , 2009 .

[31]  A. Malko,et al.  Effect of Plasmonic Au Nanoparticles on Inverted Organic Solar Cell Performance , 2013 .

[32]  Fengxian Xie,et al.  Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells , 2012, Advanced materials.

[33]  E. Waclawik,et al.  Evidence of Multiwall Carbon Nanotube Deformation Caused by Poly(3-hexylthiophene) Adhesion , 2011 .

[34]  Paul K. L. Yu,et al.  Nanoparticle-induced light scattering for improved performance of quantum-well solar cells , 2008 .

[35]  Meng-Yin Wu,et al.  Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. , 2011, Nano letters.

[36]  Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells , 2012, Beilstein journal of nanotechnology.

[37]  Yi Hong,et al.  Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles , 2009 .

[38]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[39]  Xing Wang Zhang,et al.  Plasmonic polymer tandem solar cell. , 2011, ACS nano.

[40]  S. Hawkins,et al.  Aligned carbon nanotube webs as a replacement for indium tin oxide in organic solar cells , 2013 .

[41]  J. Mertz Radiative absorption, fluorescence, and scattering of a classical dipole near a lossless interface: a unified description , 2000 .

[42]  E. Waclawik,et al.  Poly(3-hexyl-thiophene) coil-wrapped single wall carbon nanotube investigated by scanning tunneling spectroscopy , 2009 .

[43]  D. Fernig,et al.  Determination of size and concentration of gold nanoparticles from UV-vis spectra. , 2007, Analytical chemistry.

[44]  Olle Inganäs,et al.  Full day modelling of V-shaped organic solar cell , 2011 .

[45]  Fan-Ching Chien,et al.  Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells. , 2011, ACS nano.

[46]  Alex K.-Y. Jen,et al.  A Review on the Development of the Inverted Polymer Solar Cell Architecture , 2010 .

[47]  A. Tunc,et al.  Impact of the incorporation of Au nanoparticles into polymer/fullerene solar cells. , 2010, The journal of physical chemistry. A.

[48]  Yang Yang,et al.  Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer , 2012, Nature Photonics.

[49]  Michael James,et al.  Morphology of All‐Solution‐Processed “Bilayer” Organic Solar Cells , 2011, Advanced materials.

[50]  F. Krebs Fabrication and processing of polymer solar cells: A review of printing and coating techniques , 2009 .

[51]  Albert Polman,et al.  Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells , 2009 .

[52]  Luping Yu,et al.  The role of N-doped multiwall carbon nanotubes in achieving highly efficient polymer bulk heterojunction solar cells. , 2013, Nano letters.

[53]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[54]  B. de Boer,et al.  Device operation of organic tandem solar cells , 2008 .

[55]  Plasmonic-enhanced performance for polymer solar cells prepared with inverted structures , 2012 .

[56]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[57]  W. Jo,et al.  Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells , 2010 .

[58]  Christoph J. Brabec,et al.  Panchromatic Conjugated Polymers Containing Alternating Donor/Acceptor Units for Photovoltaic Applications , 2007 .

[59]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[60]  Patanjali Kambhampati,et al.  Hot Exciton Relaxation Dynamics in Semiconductor Quantum Dots: Radiationless Transitions on the Nanoscale , 2011 .

[61]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[62]  Satishchandra Ogale,et al.  TiO2–Au plasmonic nanocomposite for enhanced dye-sensitized solar cell (DSSC) performance , 2012 .

[63]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[64]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[65]  D. Tsentalovich,et al.  High-performance carbon nanotube transparent conductive films by scalable dip coating. , 2012, ACS nano.

[66]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[67]  Thomas H. Reilly,et al.  Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics , 2008 .

[68]  Jean-Michel Nunzi,et al.  Organic photovoltaic materials and devices , 2002 .

[69]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[70]  Luping Yu,et al.  Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells. , 2013, Nano letters.

[71]  F. Krebs,et al.  Low band gap polymers for organic photovoltaics , 2007 .

[72]  George D. Spyropoulos,et al.  Organic bulk heterojunction photovoltaic devices with surfactant-free Au nanoparticles embedded in the active layer , 2012 .

[73]  P. Meredith,et al.  Controlling Hierarchy in Solution‐processed Polymer Solar Cells Based on Crosslinked P3HT , 2013 .

[74]  Xiangang Luo,et al.  Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes , 2010, Advanced materials.

[75]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[76]  Fei Huang,et al.  Optical and electrical effects of gold nanoparticles in the active layer of polymer solar cells , 2012 .

[77]  G. Cerullo,et al.  Hot exciton dissociation in polymer solar cells. , 2013, Nature materials.

[78]  Dong Yun Lee,et al.  High efficiency polymer solar cells with wet deposited plasmonic gold nanodots , 2009 .

[79]  A. Umnov,et al.  Photovoltaic effect in poly-dioctyl-phenylene-ethynylene-C60 cells upon donor and acceptor excitation , 2005 .

[80]  Yong-nam Kim,et al.  Thermal degradation behavior of indium tin oxide thin films deposited by radio frequency magnetron sputtering , 2005 .

[81]  A J Heeger,et al.  Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. , 2007, Nature materials.

[82]  Zakya H. Kafafi,et al.  Polymeric photovoltaics with various metallic plasmonic nanostructures , 2013 .

[83]  C. Louis,et al.  Gold Nanoparticles for Physics, Chemistry and Biology , 2012 .

[84]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[85]  R. Norwood,et al.  Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles , 2012 .

[86]  B. Kippelen Organic Photovoltaics , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[87]  Xiong Gong,et al.  Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure , 2010 .

[88]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[89]  Arnold F. McKinley,et al.  Plasmonics and nanophotonics for photovoltaics , 2011 .

[90]  Jenny Nelson,et al.  Polymer:fullerene bulk heterojunction solar cells , 2011 .

[91]  Kwanghee Lee,et al.  Active layer thickness effect on the recombination process of PCDTBT:PC71BM organic solar cells , 2013 .

[92]  K. Honkala,et al.  Formation of gold(I) edge oxide at flat gold nanoclusters on an ultrathin MgO film under ambient conditions. , 2010, Angewandte Chemie.

[93]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[94]  P. Etchegoin,et al.  Localized plasmon resonances in inhomogeneous metallic nanoclusters , 2004 .

[95]  Christoph J. Brabec,et al.  Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors , 2002 .

[96]  Bertrand J. Tremolet de Villers,et al.  Hybrid conjugated polymer solar cells using patterned GaAs nanopillars , 2010 .

[97]  Thomas Kirchartz,et al.  Understanding the Thickness-Dependent Performance of Organic Bulk Heterojunction Solar Cells: The Influence of Mobility, Lifetime, and Space Charge. , 2012, The journal of physical chemistry letters.

[98]  Jun‐Yi Wu,et al.  Plasmon-enhanced photocurrent in dye-sensitized solar cells , 2012 .

[99]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[100]  V. Mihailetchi,et al.  Compositional dependence of the performance of poly(p-phenylene vinylene) , 2005 .

[101]  Vladimir Bulovic,et al.  Toward efficient carbon nanotube/P3HT solar cells: active layer morphology, electrical, and optical properties. , 2011, Nano letters.

[102]  J. Hillier,et al.  A study of the nucleation and growth processes in the synthesis of colloidal gold , 1951 .

[103]  Stephen C. Moratti,et al.  EXCITON DIFFUSION AND DISSOCIATION IN A POLY(P-PHENYLENEVINYLENE)/C60 HETEROJUNCTION PHOTOVOLTAIC CELL , 1996 .

[104]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[105]  L. Lagae,et al.  Fluorescence near gold nanoparticles for DNA sensing. , 2011, Analytical chemistry.

[106]  Lennart K. Piro,et al.  Predicting the Localized Surface Plasmon Resonances of Spherical Nanoparticles on a Substrate: Electrostatic Eigenmode Method , 2012 .

[107]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[108]  M. Orrit,et al.  Absorption and scattering microscopy of single metal nanoparticles. , 2006, Physical chemistry chemical physics : PCCP.

[109]  Craig F. Bohren,et al.  How can a particle absorb more than the light incident on it , 1983 .

[110]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[111]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[112]  Lionel Hirsch,et al.  P3HT:PCBM, Best Seller in Polymer Photovoltaic Research , 2011, Advanced materials.

[113]  K. Catchpole,et al.  Nanophotonic light trapping in solar cells , 2012 .

[114]  N. S. Sariciftci,et al.  Influence of processing additives to nano-morphology and efficiency of bulk-heterojunction solar cells: A comparative review , 2011 .

[115]  Carl M. Lampert,et al.  Editorial: Reporting solar cell efficiencies in Solar Energy Materials and Solar Cells , 2008 .

[116]  Frederik C. Krebs,et al.  All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps , 2009 .

[117]  E. Waclawik,et al.  Microscopic and Spectroscopic Investigation of Poly(3-hexylthiophene) Interaction with Carbon Nanotubes , 2011 .

[118]  Robert A. Street,et al.  Interface state recombination in organic solar cells , 2010 .

[119]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .