Electrostrictive effect in ferroelectrics: An alternative approach to improve piezoelectricity

Electrostriction plays an important role in the electromechanical behavior of ferroelectrics and describes a phenomenon in dielectrics where the strain varies proportional to the square of the electric field/polarization. Perovskite ferroelectrics demonstrating high piezoelectric performance, including BaTiO3, Pb(Zr1-xTix)O3, and relaxor-PbTiO3 materials, have been widely used in various electromechanical devices. To improve the piezoelectric activity of these materials, efforts have been focused on the ferroelectric phase transition regions, including shift the composition to the morphotropic phase boundary or shift polymorphic phase transition to room temperature. However, there is not much room left to further enhance the piezoelectric response in perovskite solid solutions using this approach. With the purpose of exploring alternative approaches, the electrostrictive effect is systematically surveyed in this paper. Initially, the techniques for measuring the electrostrictive effect are given and compa...

[1]  M. Onoe,et al.  Determination of Elastic and Piezoelectric Constants for Crystals in Class (3m) , 1967 .

[2]  R. Newnham,et al.  Converse method measurements of electrostriction coefficients in low-K dielectrics , 1996 .

[3]  K. Uchino,et al.  Pressure dependence of the refractive index and dielectric constant in a fluoroperovskite, KMg F 3 , 1984 .

[4]  W. Cochran,et al.  Lattice Dynamics of Alkali Halide Crystals , 1960 .

[5]  Z. Ye,et al.  Relaxor Ferroelectric Complex Perovskites: Structure, Properties and Phase Transitions , 1998 .

[6]  H. Beige,et al.  Electrostrictive effect in lead-free relaxor K0.5Na0.5NbO3–SrTiO3 ceramic system , 2005 .

[7]  F. Kremer,et al.  Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers , 2001, Nature.

[8]  L. Eric Cross,et al.  Ferroelectric Ceramics: Tailoring Properties for Specific Applications , 1993 .

[9]  K. Lubitz,et al.  Comparison of Piezoelectric Constants of PZT Ceramics with Values Calculated from Electrostrictive Coefficients , 1985 .

[10]  Wen‐hua Jiang,et al.  Complete set of properties of 0 . 92 Pb ( Zn 1 / 3 Nb 2 / 3 ) O 3 – 0 . 08 PbTiO 3 single crystal with engineered domains , 2003 .

[11]  C. Randall,et al.  Orientation dependence properties of modified tetragonal 0.88Pb(Zn1/3Nb2/3)O3–0.12PbTiO3 single crystals , 2005 .

[12]  A. Tagantsev,et al.  Positive effective Q12 electrostrictive coefficient in perovskites , 2012, 1205.5640.

[13]  Qiming Zhang,et al.  An experimental investigation of electromechanical responses in a polyurethane elastomer , 1997 .

[14]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[15]  Y. Chiang,et al.  Relaxor single crystals in the (Bi1/2Na1/2)1−xBaxZryTi1−yO3 system exhibiting high electrostrictive strain , 2001 .

[16]  T. Shrout,et al.  Critical Property in Relaxor‐PbTiO3 Single Crystals – Shear Piezoelectric Response , 2011, Advanced functional materials.

[17]  Fei Li,et al.  Electrostrictive effect in Pb(Mg1/3Nb2/3)O3-xPbTiO3 crystals , 2013 .

[18]  Elastic, piezoelectric, and dielectric properties of 0.58 Pb(Mg 1/3 Nb 2/3 ) O 3 -0.42 PbTiO 3 single crystal , 2016 .

[19]  Rui Zhang,et al.  Complete set of material constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 domain engineered single crystal , 2002 .

[20]  A. Safari,et al.  Characterization of the effective electrostriction coefficients in ferroelectric thin films , 2001 .

[21]  K. Yoon,et al.  PHASE TRANSITION, DIELECTRIC AND ELECTROSTRICTIVE BEHAVIORS IN (1-X)PYN-XPMN , 1998 .

[22]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[23]  K. Uchino,et al.  Large electrostrictive effects in relaxor ferroelectrics , 1980 .

[24]  Ron Pelrine,et al.  High-Strain Actuator Materials Based on Dielectric Elastomers , 2000 .

[25]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part I: Phenomenology , 1989 .

[26]  B. Achar,et al.  Phenomenological theory of the temperature variation of electrostriction of ferroelectrics in the paraelectric phase , 1981 .

[27]  Jerry I. Scheinbeim,et al.  High field electrostrictive response of polymers , 1994 .

[28]  N. Setter,et al.  The contribution of structural disorder to diffuse phase transitions in ferroelectrics , 1980 .

[29]  Qiming Zhang,et al.  Field‐Induced Strain in Single‐Crystal BaTiO3 , 1988 .

[30]  A. Bhalla,et al.  Electrostriction in fluoride perovskites , 1989 .

[31]  R. Newnham,et al.  Electrostriction and polarization , 1992 .

[32]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[33]  X. Ren,et al.  Large piezoelectric effect in Pb-free ceramics. , 2009, Physical review letters.

[34]  F. Meng,et al.  Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles , 2010 .

[35]  H. Unoki,et al.  Stress induced ferroelectricity in KTaO3 , 1973 .

[36]  Zhuo Xu,et al.  Composition and phase dependence of the intrinsic and extrinsic piezoelectric activity of domain engineered (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) crystals. , 2010, Journal of applied physics.

[37]  Kenji Uchino,et al.  Electrostrictive behavior of lead magnesium niobate based ceramic dielectrics , 1980 .

[38]  A. Majchrowski,et al.  NONLINEAR ELECTROSTRICTIVE PROPERTIES OF PbZrO3:Sn SINGLE CRYSTALS WITH ANTIFERROELECTRIC PHASE TRANSITIONS , 2011 .

[39]  Kyoung Kwan Ahn,et al.  Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics , 2013 .

[40]  G. Haertling PLZT electrooptic materials and applications: a review , 1987 .

[41]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[42]  L. Eyraud,et al.  Interpretation of the Softening Effect in PZT Ceramics Near the Morphotropic Phase Boundary , 2006 .

[43]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[44]  Tomoaki Yamada Electromechanical Properties of Oxygen‐Octahedra Ferroelectric Crystals , 1972 .

[45]  R. Newnham,et al.  Structure and Dielectric Properties of Materials in the Solid Solution System Pb(Mg1/3Nb2/33)O3:Pb(W1/2Mg1/2)O3 , 1979 .

[46]  K. Uchino,et al.  Electrostrictive effects in non-polar perovskites , 1980 .

[47]  H. Yan,et al.  Contribution of piezoelectric effect, electrostriction and ferroelectric/ferroelastic switching to strain-electric field response of dielectrics , 2013 .

[48]  T. Furukawa,et al.  Electrostriction as the Origin of Piezoelectricity in Ferroelectric Polymers , 1990 .

[49]  N. Setter,et al.  Dielectric and electromechanical properties of ferroelectric-relaxor 0.9 Pb(Mg1/3Nb2/3)O3–0.1PbTiO3 thin films , 2001 .

[50]  Robert E. Newnham,et al.  ELECTROSTRICTION : NONLINEAR ELECTROMECHANICAL COUPLING IN SOLID DIELECTRICS , 1997 .

[51]  Dragan Damjanovic,et al.  Nanodomains in Fe+3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties , 2009 .

[52]  Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr,Ti)O3 ceramics , 2009, 0905.0103.

[53]  E. Fukada History and recent progress in piezoelectric polymers , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[54]  Qiming Zhang,et al.  Neutron diffraction study of electrostrictive coefficients of prototype cubic phase of relaxor ferroelectric PbMg1/3 Nb2/3 O3 , 1998 .

[55]  Qiming Zhang,et al.  Pyroelectric and Electrocaloric Materials , 2020, Progress in Advanced Dielectrics.

[56]  Dragan Damjanovic,et al.  Domain wall contributions in Pb"Zr,Ti…O3 ceramics at morphotropic phase boundary: A study of dielectric dispersion , 2010 .

[57]  Rui Zhang,et al.  Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains , 2003 .

[58]  Shujun Zhang,et al.  High performance ferroelectric relaxor-PbTiO3 single crystals: Status and perspective , 2012 .

[59]  Xiaobing Ren,et al.  Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching , 2004, Nature materials.

[60]  Zhenrong Li,et al.  An efficient way to enhance output strain for shear mode Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals: Applying uniaxial stress perpendicular to polar direction , 2012 .

[61]  R. Pirc,et al.  Effect of polar nanoregions on giant electrostriction and piezoelectricity in relaxor ferroelectrics , 2004 .

[62]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[63]  Zhang,et al.  Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer , 1998, Science.

[64]  R. Newnham,et al.  Interferometric evaluation of electrostriction coefficients , 1996 .

[65]  R. Newnham,et al.  Electrostriction in Pb (Zn13Nb23)O3 , 1979 .

[66]  G. Samara Pressure and Temperature Dependences of the Dielectric Properties of the Perovskites BaTi O 3 and SrTi O 3 , 1966 .

[67]  Sang-goo Lee,et al.  Growth and electrostrictive properties of Pb(Mg1/3Nb2/3)O3 crystals , 1999 .

[68]  P. Weaver,et al.  Temperature dependence of high field electromechanical coupling in ferroelectric ceramics , 2010 .

[69]  V. Anderson,et al.  Mechanical stress in a dielectric solid from a uniform electric field. , 1986, Physical review. B, Condensed matter.

[70]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[71]  E. Furman,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system , 1989 .

[72]  Qiming Zhang,et al.  Characteristics of the electromechanical response and polarization of electric field biased ferroelectrics , 1995 .

[73]  J. Zhai,et al.  Phase transitions, relaxor behavior, and electrical properties in (1-x)(Bi_0.5Na_0.5)Ti0_3-x(K_0.5Na_0.5)NbO_3 lead-free piezoceramics , 2012 .

[74]  D. Berlincourt,et al.  Piezoelectric transducer materials , 1965 .

[75]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[76]  F. Xia,et al.  An all-organic composite actuator material with a high dielectric constant , 2002, Nature.

[77]  P. Weaver,et al.  Temperature dependence of strain–polarization coupling in ferroelectric ceramics , 2010 .

[78]  N. Setter,et al.  An Optical Study of the Ferroelectric Relaxors Pb(Mg1/3nb2/3)O3,Pb(Sc1/2ta1/2)O3, and Pb(Sc1/2nb1/2)O3 , 1981 .

[79]  W. Cao,et al.  Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn/sub 1/3/Nb/sub 2/3/)O/sub 3/-0.45PbTiO/sub 3/ single crystal with designed multidomains , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[80]  K. Uchino,et al.  Electrostrictive effect in perovskites and its transducer applications , 1981 .

[81]  Matthew J. Davis,et al.  Rotator and extender ferroelectrics: Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics , 2007, cond-mat/0703121.

[82]  G. Ravichandran,et al.  Large electrostrictive actuation of barium titanate single crystals , 2004 .

[83]  Dragan Damjanovic Hysteresis in Piezoelectric and Ferroelectric Materials , 2006 .

[84]  Dragan Damjanovic,et al.  STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .

[85]  N. Setter,et al.  The Role of B-Site Cation Disorder in Diffuse Phase-Transition Behavior of Perovskite Ferroelectrics , 1980 .

[86]  K. Uchino,et al.  Electrostrictive effect in lead magnesium niobate single crystals , 1980 .

[87]  O. Noblanc,et al.  Influence of domain walls on piezoelectric and electrostrictive properties of PMN-PT (65/35) ceramics , 1994 .

[88]  Robert Blinc,et al.  Mechanisms of electrostriction and giant piezoelectric effect in relaxor ferroelectrics , 2003 .

[89]  Kenji Uchino,et al.  Electrostrictive effects in antiferroelectric perovskites , 1981 .

[90]  Rui Zhang,et al.  Elastic, piezoelectric, and dielectric properties of 0.58Pb(Mg1/3Nb2/3)O3-0.42PbTiO3 single crystal , 2004 .

[91]  Dragan Damjanovic A morphotropic phase boundary system based on polarization rotation and polarization extension , 2010, 1007.4394.

[92]  A. Bhalla,et al.  Temperature dependence of the dielectric constant of KMnF3 , 1989 .

[93]  Shenyang Hu,et al.  A thermodynamic free energy function for potassium niobate , 2009 .

[94]  Thomas R. Shrout,et al.  Relaxor based ferroelectric single crystals for electro-mechanical actuators , 1997 .

[95]  J. C. Hicks,et al.  Measurement of the electrostrictive coefficients of modified lead magnesium niobate using neutron powder diffraction , 1998 .

[96]  Haosu Luo,et al.  The Growth and Properties of Relaxor‐Based Ferroelectric Single Crystals , 2010 .

[97]  G. Ravichandran,et al.  Large strain electrostrictive actuation in barium titanate , 2000 .

[98]  Qiang Li,et al.  Progress in lead-based ferroelectric and antiferroelectric single crystals: composition modification, crystal growth and properties , 2012 .

[99]  T. Shrout,et al.  Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals , 1997 .

[100]  R. Srinivasan,et al.  Strain dependence of static and high frequency dielectric constants of some alkali halides , 1972 .

[101]  K. Uchino,et al.  Diffuse phase transition in lead zinc niobate , 1978 .