A posteriori error estimator for eigenvalue problems by mixed finite element method

In this paper, a residual type of a posteriori error estimator for the general second order elliptic eigenpair approximation by the mixed finite element method is derived and analyzed, based on a type of superconvergence result of the eigenfunction approximation. Its efficiency and reliability are proved by both theoretical analysis and numerical experiments.

[1]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[2]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[3]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[4]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  B. Mercier,et al.  Eigenvalue approximation by mixed and hybrid methods , 1981 .

[7]  F. Chatelin Spectral approximation of linear operators , 2011 .

[8]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[11]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[12]  D. Boffi,et al.  Some Remarks on Eigenvalue Approximation by Finite Elements , 2011 .

[13]  Francesca Gardini Mixed approximation of eigenvalue problems: A superconvergence result , 2009 .

[14]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[15]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[16]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[17]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[18]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[19]  Ricardo G. Durán,et al.  A POSTERIORI ERROR ESTIMATORS FOR MIXED APPROXIMATIONS OF EIGENVALUE PROBLEMS , 1999 .

[20]  Jinchao Xu,et al.  New mixed finite elements for plane elasticity and Stokes equations , 2011 .

[21]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[22]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[23]  Michael T. Heath,et al.  Scientific Computing , 2018 .

[24]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[25]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[26]  María Cecilia Rivara,et al.  Design and data structure of fully adaptive, multigrid, finite-element software , 1984, ACM Trans. Math. Softw..

[27]  A Superconvergence result for mixed finite element approximations of the eigenvalue problem , 2012 .

[28]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the eigenvalue problem , 2011 .

[29]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[30]  Zhiming Chen Aposteriori error analysis and adaptive methods for partial differential equations , 2006 .

[31]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[32]  Rolf Stenberg,et al.  Energy norm a posteriori error estimates for mixed finite element methods , 2006, Math. Comput..

[33]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[34]  Constantin Bacuta,et al.  Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains , 2003 .

[35]  Rolf Rannacher,et al.  A posteriori error control for finite element approximations of elliptic eigenvalue problems , 2001, Adv. Comput. Math..

[36]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[37]  R. Richardson The International Congress of Mathematicians , 1932, Science.

[38]  Jianguo Huang,et al.  Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation , 2012 .

[39]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[40]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[41]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[42]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[43]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .