Nanoindentation characteristics of nanocrystalline tungsten via atomistic simulation

ABSTRACT Molecular dynamics simulations are performed to explore nanoindentation characteristics of tungsten, and the influences of grain size, indenter velocity, indenter size, and temperature are discussed. The results illustrate that the hardness reduces as the grain size (5.00 ∼ 24.62 nm) decreases. There is no phase change observed during the whole deformation process. For monocrystalline W, the dislocation nucleation and propagation dominate the deformation mechanisms. Differently, the primary deformation mode of nanocrystalline W is the grain split and motion of GBs. Dislocations primarily nucleate below the contact surface of the indenter and substrate and then glide in the grain core. The monocrystalline W has better pattern-forming ability than nanocrystalline. Besides, the pattern-forming ability of nanocrystalline W is negatively correlated with the average grain size (5.00 ∼ 24.62 nm). The von Mises stress is mainly concentrated in the interface between the indenter and substrate, the dislocation area for monocrystalline, and grain boundaries for nanocrystalline. The indentation force and hardness are positively correlated with indenter radius size (30 ∼ 80 Å), negatively correlated with temperature (10 ∼ 1500 K), and insensitive to the indenter velocity when velocity is lower than 3.0 Å /ps (300 m/s).

[1]  T. Fang,et al.  Deformation mechanisms and mechanical properties of nanocrystalline CuxNi100-x alloys during indentation using molecular dynamics , 2022, Materials Today Communications.

[2]  J. Alsmeier,et al.  An Analytical Model for Thin Film Pattern-dependent Asymmetric Wafer Warpage Prediction , 2022, 2022 IEEE International Memory Workshop (IMW).

[3]  T. Liu,et al.  Molecular dynamics simulation of the growth and diffusion mechanisms of Fe–Cu bimetallic nanoparticles , 2022, Philosophical Magazine.

[4]  R. Liu,et al.  Hierarchical microstructures enabled excellent low-temperature strength-ductility synergy in bulk pure tungsten , 2022, Acta Materialia.

[5]  K. Zhu,et al.  Effect of He on the hardness and incipient plasticity of W films during nanoindentation , 2021, Journal of Nuclear Materials.

[6]  R. Xia,et al.  Mechanical properties and scaling laws of polycrystalline CuZr shape memory alloy , 2021, Journal of Applied Physics.

[7]  Miaolin Feng,et al.  Atomistic simulation of nanoindentation response of dual-phase nanocrystalline CoCrFeMnNi high-entropy alloy , 2021, Journal of Applied Physics.

[8]  M. Alava,et al.  Nanoindentation of single crystalline Mo: Atomistic defect nucleation and thermomechanical stability , 2021, 2105.07744.

[9]  Q. Cao,et al.  Fragility under shocking: molecular dynamics insights into defect evolutions in tungsten lattice , 2021, Tungsten.

[10]  Junqin Shi,et al.  Atomistic insights into the deformation mechanism of a CoCrNi medium entropy alloy under nanoindentation , 2021, International Journal of Plasticity.

[11]  Shan Tang,et al.  Understanding the linear relation between pop-in excursion length and critical force for spherical nanoindentation , 2021 .

[12]  K. Xiao,et al.  Atomistic study on the anomalous temperature-dependent dynamic tensile strength of ice under shock loading , 2021 .

[13]  Soo‐Hyun Kim,et al.  Density functional theory study on the reducing agents for atomic layer deposition of tungsten using tungsten chloride precursor , 2021 .

[14]  A. Rahim,et al.  Ultrathin broadband metasurface-based absorber comprised of tungsten nanowires , 2020 .

[15]  W. Setyawan,et al.  Grain size dependence of hardness in nanocrystalline silicon carbide , 2020 .

[16]  T. Fang,et al.  Effects of grain and twin boundary on friction and contact characteristics of CuZrAl nanocrystallines , 2020 .

[17]  R. Xia,et al.  Structure-property relation of nanoporous graphene membranes , 2020 .

[18]  E. E. Zhurkin,et al.  High temperature nanoindentation of tungsten: Modelling and experimental validation , 2020, International Journal of Refractory Metals and Hard Materials.

[19]  D. Kiener,et al.  Open-cell tungsten nanofoams: Chloride ion induced structure modification and mechanical behavior , 2020, Results in Physics.

[20]  R. Klassen,et al.  The effect of crystal anisotropy and pre-existing defects on the incipient plasticity of FCC single crystals during nanoindentation , 2020 .

[21]  Jia Li,et al.  Indentation-induced plastic behaviour of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminate: an atomic simulation , 2020, RSC advances.

[22]  Guoming Hu,et al.  Nanoindentation response of nanocrystalline copper via molecular dynamics: Grain-size effect , 2020 .

[23]  R. Banerjee,et al.  Hall-Petch and inverse Hall-Petch relations in high-entropy CoNiFeAlxCu1-x alloys , 2020 .

[24]  S. Lee,et al.  Spherical nanoindentation on tungsten single crystal: The transition from source-controlled plasticity to bulk plasticity , 2020 .

[25]  Chao Xu,et al.  Probing the indentation induced nanoscale damage of rhenium , 2020 .

[26]  Junqin Shi,et al.  Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: A molecular dynamics simulation , 2019, Applied Surface Science.

[27]  Wei Li,et al.  Irradiation effect on mechanical properties of tungsten from molecular dynamic simulation , 2019, Materials Letters.

[28]  Sen Zhang,et al.  Influence of rapid thermal annealing on the wafer warpage in 3D NAND flash memory , 2019, Semiconductor Science and Technology.

[29]  W. Curtin,et al.  Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K , 2019, Acta Materialia.

[30]  R. Xia,et al.  Nanoscale Assembly of Copper Bearing-Sleeve via Cold-Welding: A Molecular Dynamics Study , 2018, Nanomaterials.

[31]  K. Durst,et al.  Indentation size effect in tungsten: Quantification of geometrically necessary dislocations underneath the indentations using HR-EBSD , 2018, Materials Characterization.

[32]  G. Cross,et al.  Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten , 2018, Computational Materials Science.

[33]  S. Chavoshi,et al.  Deformation Mechanisms in Nanotwinned Tungsten Nanopillars: Effects of Coherent Twin Boundary Spacing , 2018 .

[34]  R. Balasubramaniam,et al.  Investigations into the mechanism of material removal and surface modification at atomic scale on stainless steel using molecular dynamics simulation , 2018 .

[35]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[36]  B. Previtali,et al.  Advanced characterizations of fluorine-free tungsten film and its application as low resistance liner for PCRAM , 2017 .

[37]  N. Hu,et al.  Molecular dynamics simulation of BCC Ta with coherent twin boundaries under nanoindentation , 2017 .

[38]  P. Krakhmalev,et al.  Atomistic Insights on the Wear/Friction Behavior of Nanocrystalline Ferrite During Nanoscratching as Revealed by Molecular Dynamics , 2017, Tribology Letters.

[39]  M. François,et al.  An enhanced formulation to determine Young's and shear moduli of thin films by means of Impulse Excitation Technique , 2017 .

[40]  H. Gong,et al.  Phase transition and mechanical properties of tungsten nanomaterials from molecular dynamic simulation , 2017, Journal of Nanoparticle Research.

[41]  N. Nouri,et al.  Grain boundary effects on nanoindentation of Fe bicrystal using molecular dynamic , 2016 .

[42]  O. Kraft,et al.  Fracture toughness characterization of single-crystalline tungsten using notched micro-cantilever specimens , 2016 .

[43]  Anuj Kumar Goyal,et al.  Nanoindentation of gold and gold alloys by molecular dynamics simulation , 2016 .

[44]  Pierre Hirel,et al.  Atomsk: A tool for manipulating and converting atomic data files , 2015, Comput. Phys. Commun..

[45]  H. Urbassek,et al.  Comparative simulation study of the structure of the plastic zone produced by nanoindentation , 2015 .

[46]  D. Marco,et al.  Frugivorous Bird Guild Seasonal Patterns in Semiarid Chaco Forests are Linked to Habitat Seasonality but Reveal Phylogenetic Signature , 2015 .

[47]  M. Meyers,et al.  Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution , 2014 .

[48]  Fengzhou Fang,et al.  Study of nanoindentation behavior of amorphous alloy using molecular dynamics , 2014 .

[49]  Huajian Gao,et al.  Mechanical properties and scaling laws of nanoporous gold , 2013 .

[50]  A. Wilkinson,et al.  Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction , 2010 .

[51]  M. Göken,et al.  Indentation size effect in metallic materials: Correcting for the size of the plastic zone , 2005 .

[52]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[53]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[54]  S. Kamiyama,et al.  Shared tungsten structures for FEOL/BEOL compatibility in logic-friendly merged DRAM , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[55]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[56]  M. Baskes,et al.  APPLICATION OF THE EMBEDDED ATOM METHOD TO THE FRACTURE OF INTERFACES , 1988 .

[57]  J. Ligda,et al.  Adiabatic shear localization of tungsten based heterogeneous multilayer structures , 2021 .

[58]  N. Naveen Kumar,et al.  Influence of dislocations and grain boundaries on diffraction line profiles of nano-crystalline materials: A numerical study , 2020 .

[59]  S. Barengolts,et al.  Transition in velocity and grouping of arc spot on different nanostructured tungsten electrodes , 2014 .

[60]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .