Analysis and control of the near-wake flow over a square-back geometry

Abstract A 3D numerical simulation, based on the Lattice Boltzmann method is carried out on the near-wake flow behind a generic square-back blunt body to analyze and establish a method to control the near-wake flow. The flow topology is described by the velocity and the pressure fields. The influence of the wake vortices on the aerodynamic drag is clarified and quantified. In order to reduce this drag, an active open-loop flow control is applied by continuous blowing devices distributed around the base periphery. The blowing effect on the behind body flow is a reduction of the wake section and of the total pressure loss in the wake and an increase of the static pressure on the base of the square body. This control leads to a significant drag reduction of Δ C x  = −29% with a blowing velocity of 1.5 V 0 . The efficiency is then studied, and we found that the most efficient control is obtained for a blowing velocity of 0.5 V 0 and a jet angle of 45°. In this case, a 20% drag reduction is obtained, and the energy needed to control the system is seven times lower than the energy saved by the control.

[1]  Patrick Gilliéron,et al.  Contribution de l'éclatement tourbillonnaire à la réduction de la traînée des véhicules automobiles : approche numérique , 2006 .

[2]  C. Tropea,et al.  Flow Around Surface-Mounted, Three-Dimensional Obstacles , 1993 .

[3]  Joel H. Ferziger,et al.  A fluid mechanicians view of wind engineering: Large eddy simulation of flow past a cubic obstacle , 1997 .

[4]  C. Tropea,et al.  The Flow Around Surface-Mounted, Prismatic Obstacles Placed in a Fully Developed Channel Flow (Data Bank Contribution) , 1993 .

[5]  Mohamed Gad-el-Hak,et al.  Modern developments in flow control , 1996 .

[6]  Hudong Chen,et al.  Digital Physics Approach to Computational Fluid Dynamics: Some Basic Theoretical Features , 1997 .

[7]  Patrick Gilliéron,et al.  Reduction of the Aerodynamic Drag Due to Cooling Systems: An Analytical and Experimental Approach , 2005 .

[8]  Mathieu Roumeas,et al.  Contribution à l'analyse et au contrôle des sillages de corps épais par aspiration ou soufflage continu , 2006 .

[9]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[10]  Patrick Chassaing,et al.  Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder , 1987, Journal of Fluid Mechanics.

[11]  James F. Bell,et al.  Aerodynamic drag of heavy vehicles (class 7-8): simulation and benchmarking , 2000 .

[12]  W. Hucho,et al.  Aerodynamics of Road Vehicles , 1987 .

[13]  Patrick Gilliéron,et al.  Contrôle des écoulements appliqué a l'automobile. État de l'art , 2002 .

[14]  A. Kourta Instability of channel flow with fluid injection and parietal vortex shedding , 2004 .

[15]  Richard Shock,et al.  Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method , 2004, Journal of Fluid Mechanics.

[16]  Lars Davidson,et al.  Numerical Study of the Flow Around a Bus-Shaped Body , 2003 .

[17]  Michele Onorato,et al.  Drag Measurement Through Wake Analysis , 1984 .

[18]  A. Robins,et al.  The flow around a surface-mounted cube in uniform and turbulent streams , 1977, Journal of Fluid Mechanics.

[19]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[20]  J. Hunt,et al.  Kinematical studies of the flows around free or surface-mounted obstacles; applying topology to flow visualization , 1978, Journal of Fluid Mechanics.

[21]  E. Logan,et al.  Turbulent Shear Flow Over Surface Mounted Obstacles , 1990 .

[22]  Albert R. George,et al.  Experimental Study of a Ground Vehicle Body Unsteady Near Wake , 1999 .

[23]  I. E. Idel'cik Memento des Pertes de Charge , 1999 .

[24]  Sinisa Krajnovic,et al.  Large-Eddy Simulation of the Flow Around a Bluff Body , 2002 .

[25]  Azeddine Kourta,et al.  Separated Flows Around the Rear Window of a Simplified Car Geometry , 2008 .

[26]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[27]  F. Chometon,et al.  Modélisation des écoulements tridimensionnels décolles autour des véhicules automobiles à l'aide d'un modèle à zéro-dimension : Journées aérodynamique-aéroacoustique-aérothermique automobile et ferroviaire , 1997 .

[28]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986, Physical review letters.

[29]  Y. Pomeau,et al.  Lattice-gas automata for the Navier-Stokes equation. , 1986, Physical review letters.

[30]  Gunther Ramm,et al.  Some salient features of the time - averaged ground vehicle wake , 1984 .

[31]  Matthaeus,et al.  Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  Hudong Chen,et al.  Realization of Fluid Boundary Conditions via Discrete Boltzmann Dynamics , 1998 .

[33]  R. Martinuzzi,et al.  Energy balance for turbulent flow around a surface mounted cube placed in a channel , 1996 .

[34]  W. Shyy,et al.  A multi‐block lattice Boltzmann method for viscous fluid flows , 2002 .

[35]  Jaeho Hwang,et al.  A Study on Vortex Shedding Around a Bluff Body Near the Ground , 2003 .

[36]  Richard Shock,et al.  Recent results on two-dimensional airfoils using a lattice Boltzmann-based algorithm , 2002 .