Revealing the roles of Zr on enhanced H2-SCR performances on Pt/TiO2 catalyst

[1]  Fudong Liu,et al.  Engineering a PtCu Alloy to Improve N2 Selectivity of NH3-SCO over the Pt/SSZ-13 Catalyst. , 2024, ACS applied materials & interfaces.

[2]  Yaoqiang Chen,et al.  Engineering CeZrOx-Cu/SSZ-13 coupled catalysts to synergistically enhance the low-temperature NH3-SCR activity , 2023, Chemical Engineering Journal.

[3]  D. Zanchet,et al.  Acidity Modulation of Pt-Supported Catalyst Enhances C-O Bond Cleavage Over Acetone Hydrodeoxygenation , 2023, SSRN Electronic Journal.

[4]  Jinzhu Ma,et al.  New insights into the catalytic mechanism of VOCs abatement over Pt/Beta with active sites regulated by zeolite acidity , 2023, Applied Catalysis B: Environmental.

[5]  Ming Zhao,et al.  Pt/doped mullite catalysts with abundant oxygen vacancies and enhanced oxygen migration capacity for NO oxidation , 2023, Journal of Catalysis.

[6]  Su Bin Kim,et al.  The Role of Pt valence state and La doping on Titanium supported Pt-La/TiO2 catalyst for selective catalytic reduction with H2 , 2022, Applied Surface Science.

[7]  Xinbao Zhu,et al.  Selective Synthesis of 1,4-Dioxane from Oxirane Dimerization over ZrO2/TiO2 Catalyst at Low Temperature , 2022, Catalysts.

[8]  Ming Zhao,et al.  Constructing a Pt/YMn2O5 Interface to Form Multiple Active Centers to Improve the Hydrothermal Stability of NO Oxidation. , 2022, ACS applied materials & interfaces.

[9]  Yiyang Zhang,et al.  Selective catalytic reduction of NOx by hydrogen over PtIr/TiO2 catalyst , 2022, Catalysis Today.

[10]  Xiaoqiang An,et al.  Facet-Regulating Local Coordination of Dual-Atom Cocatalyzed TiO2 for Photocatalytic Water Splitting , 2021, ACS Catalysis.

[11]  Jijun Zhao,et al.  Crystal Phase Mediated Restructuring of Pt on TiO2 with Tunable Re-activity: Redispersion versus Reshaping , 2021, ACS Catalysis.

[12]  R. Gläser,et al.  Promotion effect of niobium on ceria catalyst for selective catalytic reduction of NO with NH3 , 2021, Journal of Rare Earths.

[13]  Yadong Li,et al.  Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO2 Methanation. , 2021, Nano letters.

[14]  I. C. Lekshmi,et al.  TiO2-ZrO2 nanocomposite with tetragonal zirconia phase and photocatalytic degradation of Alizarin Yellow GG azo dye under natural sunlight , 2021 .

[15]  Lei Jin,et al.  Supported Pt Nanoparticles on Mesoporous Titania for Selective Hydrogenation of Phenylacetylene , 2020, Frontiers in Chemistry.

[16]  K. Narasimharao,et al.  Y2O3 modified Au-La2O3 nanorod catalysts for oxidative cracking of n-propane , 2020 .

[17]  Rui‐tang Guo,et al.  Enhancement of potassium resistance of Ce–Ti oxide catalyst for NH3-SCR reaction by modification with holmium , 2020 .

[18]  Xu Li,et al.  Boron-doped rutile TiO2/ anatase TiO2/ ZrTiO4 ternary heterojunction photocatalyst with optimized phase interface and band structure , 2020 .

[19]  Luyi Zhu,et al.  Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties , 2020 .

[20]  R. Zbořil,et al.  Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2 , 2020, Journal of Materials Chemistry A.

[21]  Xuebing Li,et al.  Pt/SSZ-13 as an efficient catalyst for the selective catalytic reduction of NOx with H2 , 2019, Catalysis Science & Technology.

[22]  Zhihua Wang,et al.  Promoting effect of Au on Pd/TiO2 catalyst for the selective catalytic reduction of NOx by H2 , 2019, Catalysis Today.

[23]  Zhenhua Zhou,et al.  Di-metal-doped sulfur resisting perovskite catalysts for highly efficient H2-SCR of NO , 2018, Environmental Science and Pollution Research.

[24]  Wei Sun,et al.  Facile Synthesis of PtxNiy Catalyst Supported on Carbon for Low Temperature H2–SCR , 2017 .

[25]  G. Pacchioni,et al.  Fifty–Fifty Zr–Ti Solid Solution with a TiO2-Type Structure: Electronic Structure and Photochemical Properties of Zirconium Titanate ZrTiO4 , 2017 .

[26]  J. VandeVondele,et al.  Catalyst support effects on hydrogen spillover , 2017, Nature.

[27]  Li Wang,et al.  Constructing TiO2 p-n homojunction for photoelectrochemical and photocatalytic hydrogen generation , 2016 .

[28]  Dong Wook Kwon,et al.  Effect of Pt Particle Size and Valence State on the Performance of Pt/TiO2 Catalysts for CO Oxidation at Room Temperature , 2016 .

[29]  Lirong Zheng,et al.  Selective catalytic reduction of NOx with H2 over WO3 promoted Pt/TiO2 catalyst , 2016 .

[30]  Tianle Zhu,et al.  Pt–Au/CeO2 catalysts for the simultaneous removal of carbon monoxide and formaldehyde , 2016 .

[31]  Ye Liu,et al.  Influence of support properties on H2 selective catalytic reduction activities and N2 selectivities of Pt catalysts , 2015 .

[32]  E. Iglesia,et al.  Catalytic NO activation and NO-H2 reaction pathways , 2014 .

[33]  Tao Zhang,et al.  Crystal phase effects on the structure and performance of ruthenium nanoparticles for CO2 hydrogenation , 2014 .

[34]  G. Seo,et al.  Incorporation of zirconia onto silica for improved Pt/SiO2 catalysts for the selective reduction of NO by H2 , 2012 .

[35]  Hideaki Hamada,et al.  A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide , 2012 .

[36]  A. M. Efstathiou,et al.  Industrial NOx control via H2-SCR on a novel supported-Pt nanocatalyst , 2011 .

[37]  C. Costa,et al.  Hydrogen Lean-DeNOx as an Alternative to the Ammonia and Hydrocarbon Selective Catalytic Reduction (SCR) , 2011 .

[38]  Landong Li,et al.  Low temperature H2-SCR over platinum catalysts supported on Ti-containing MCM-41 , 2010 .

[39]  Sounak Roy,et al.  NOx storage-reduction catalysis: from mechanism and materials properties to storage-reduction performance. , 2009, Chemical reviews.

[40]  A. M. Efstathiou,et al.  The influence of reaction temperature on the chemical structure and surface concentration of active NOx in H2-SCR over Pt/MgOCeO2: SSITKA-DRIFTS and transient mass spectrometry studies , 2008 .

[41]  L. Leclercq,et al.  An overview: Comparative kinetic behaviour of Pt, Rh and Pd in the NO + CO and NO + H2 reactions , 2006 .

[42]  M. Daturi,et al.  FT-IR study of CO adsorption on Pt/CeO2: characterisation and structural rearrangement of small Pt particles , 2005 .

[43]  H. Yoshida,et al.  Factors Controlling Activity and Selectivity for SCR of NO by Hydrogen over Supported Platinum Catalysts , 2004 .

[44]  M. Machida,et al.  Oscillation in low-temperature NO–H2–O2 reactions over Pt catalysts supported on NOx-adsorbing material, TiO2–ZrO2 , 2004 .

[45]  T. Kijima,et al.  Low temperature catalytic NOx–H2 reactions over Pt/TiO2-ZrO2 in an excess oxygen , 2001 .

[46]  Cristina Costa,et al.  An Investigation of the NO/H2/O2 (Lean-deNOx) Reaction on a Highly Active and Selective Pt/La0.5Ce0.5MnO3 Catalyst , 2001 .

[47]  A. Ueda,et al.  Two conversion maxima at 373 and 573K in the reduction of nitrogen monoxide with hydrogen over Pd/TiO2 catalyst , 1998 .

[48]  G. Kubas Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals , 1988 .

[49]  R. T. Yang,et al.  Understanding the promotional effect of 3d transition metals (Fe, Co, Cu) on Pd/TiO2 for H2-SCR , 2021, Catalysis Science & Technology.

[50]  R. T. Yang,et al.  Synergism between palladium and nickel on Pd-Ni/TiO2 for H2-SCR: A transient DRIFTS study , 2020 .

[51]  Zuo-yu Sun,et al.  Research and development of hydrogen fuelled engines in China , 2012 .