Baxter's inequality for finite predictor coefficients of multivariate long-memory stationary processes

For a multivariate stationary process, we develop explicit representations for the finite predictor coefficient matrices, the finite prediction error covariance matrices and the partial autocorrelation function (PACF) in terms of the Fourier coefficients of its phase function in the spectral domain. The derivation is based on a novel alternating projection technique and the use of the forward and backward innovations corresponding to the predictions based on the infinite past and future, respectively. We show that such representations are ideal for studying the rates of convergence of the finite predictor coefficients, prediction error covariances, and the PACF as well as for proving a multivariate version of Baxter's inequality for a multivariate FARIMA process with a common fractional differencing order for all components of the process.

[1]  Jens-Peter Kreiss,et al.  Baxter's inequality and sieve bootstrap for random fields , 2017 .

[2]  C. Ing,et al.  Estimation of inverse autocovariance matrices for long memory processes , 2016, 1603.05416.

[3]  M. Pourahmadi,et al.  Rigidity for Matrix-Valued Hardy Functions , 2016 .

[4]  D. Politis,et al.  Baxter’s inequality for triangular arrays , 2015 .

[5]  M. Pourahmadi,et al.  The intersection of past and future for multivariate stationary processes , 2015, 1501.00625.

[6]  D. Poskitt,et al.  Higher-order improvements of the sieve bootstrap for fractionally integrated processes , 2013, 1311.0096.

[7]  G. Kapetanios,et al.  Estimation and Inference for Impulse Response Functions from Univariate Strongly Persistent Processes , 2013 .

[8]  N. Bingham,et al.  Verblunsky coefficients and Nehari sequences , 2013 .

[9]  V. A. Samaranayake,et al.  Asymptotic properties of sieve bootstrap prediction intervals for FARIMA processes , 2012 .

[10]  Julius S. Bendat,et al.  Stationary Random Processes , 2012 .

[11]  Eric R. Ziegel,et al.  Time Series: Theory and Methods (2nd ed,) , 2012 .

[12]  N. H. Bingham,et al.  Multivariate prediction and matrix Szego theory , 2012, 1203.0962.

[13]  D. Politis,et al.  On the range of validity of the autoregressive sieve bootstrap , 2012, 1201.6211.

[14]  N. Bingham,et al.  An explicit representation of Verblunsky coefficients , 2011, 1109.4513.

[15]  Barry Simon,et al.  The Analytic Theory of Matrix Orthogonal Polynomials , 2007, 0711.2703.

[16]  Bernd Kirstein,et al.  On the theory of matrix-valued functions belonging to the Smirnov class , 2007, 0706.1901.

[17]  A. Inoue AR and MA representation of partial autocorrelation functions, with applications , 2007, math/0702648.

[18]  Akihiko Inoue,et al.  Explicit representation of finite predictor coefficients and its applications , 2004, math/0405051.

[19]  V. Peller Hankel Operators and Their Applications , 2003, IEEE Transactions on Automatic Control.

[20]  E. Parzen Foundations of Time Series Analysis and Prediction Theory , 2002 .

[21]  C. Chung,et al.  Calculating and analyzing impulse responses for the vector ARFIMA model , 2001 .

[22]  A. Inoue,et al.  Partial autocorrelation functions of the fractional ARIMA processes with negative degree of differencing , 2000 .

[23]  A. Inoue Asymptotics for the partial autocorrelation function of a stationary process , 2000 .

[24]  A. Inoue,et al.  Asymptotic behaviour for partial autocorrelation functions of fractional ARIMA processes , 2000 .

[25]  P. Bühlmann Sieve bootstrap for time series , 1997 .

[26]  Peter Bühlmann,et al.  Moving-average representation of autoregressive approximations , 1995 .

[27]  James Rovnyak,et al.  Topics in Hardy Classes and Univalent Functions , 1994 .

[28]  M. Pourahmadi,et al.  The mixing rate of a stationary multivariate process , 1993 .

[29]  M. Pourahmadi,et al.  Baxter's inequality and convergence of finite predictors of multivariate stochastic processess , 1993 .

[30]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[31]  J. Conway Function theory on the unit circle , 1991 .

[32]  S. Dégerine,et al.  Canonical Partial Autocorrelation Function of a Multivariate Time Series , 1990 .

[33]  E. Hannan,et al.  The statistical theory of linear systems , 1989 .

[34]  N. Babayan Asymptotic behavior of the prediction error , 1984 .

[35]  Nicholas P. Jewell,et al.  Characterizations of completely nondeterministic stochastic processes. , 1983 .

[36]  J. Geluk Π-regular variation , 1981 .

[37]  Fred L. Ramsey,et al.  Characterization of the Partial Autocorrelation Function , 1974 .

[38]  K. Berk Consistent Autoregressive Spectral Estimates , 1974 .

[39]  N. Levinson,et al.  Weighted trigonometrical approximation onR1 with application to the Germ field of a stationary Gaussian noise , 1964 .

[40]  G. Baxter An Asymptotic Result for the Finite Predictor. , 1962 .

[41]  H. Helson,et al.  Prediction theory and Fourier Series in several variables , 1958 .

[42]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes , 1957 .

[43]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[44]  D. Sarason Function theory on the unit circle , 1978 .

[45]  E. J. Hannan,et al.  Multiple time series , 1970 .

[46]  V. Solev,et al.  The Asymptotic Behavior of the Prediction Error of a Stationary Sequence with a Spectral Density of Special Type , 1968 .

[47]  H. Helson,et al.  Prediction theory and fourier series in several variables. II , 1961 .

[48]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes, II , 1958 .