Transition‐Metal Substitution Doping in Synthetic Atomically Thin Semiconductors

Large-area "in situ" transition-metal substitution doping for chemical-vapor-deposited semiconducting transition-metal-dichalcogenide monolayers deposited on dielectric substrates is demonstrated. In this approach, the transition-metal substitution is stable and preserves the monolayer's semiconducting nature, along with other attractive characteristics, including direct-bandgap photoluminescence.

[1]  C. V. Singh,et al.  Vertically Oriented Arrays of ReS2 Nanosheets for Electrochemical Energy Storage and Electrocatalysis. , 2016, Nano letters.

[2]  N. Koratkar,et al.  Aging of Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.

[3]  Nan Wang,et al.  Manganese Doping of Monolayer MoS2: The Substrate Is Critical. , 2015, Nano letters.

[4]  T. Heinz,et al.  Population inversion and giant bandgap renormalization in atomically thin WS2 layers , 2015, Nature Photonics.

[5]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[6]  B. Sumpter,et al.  Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. , 2015, ACS nano.

[7]  Kaustav Banerjee,et al.  Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. , 2015, Nano letters.

[8]  Yunfeng Shi,et al.  Wetting of mono and few-layered WS2 and MoS2 films supported on Si/SiO2 substrates. , 2015, ACS nano.

[9]  Junsong Yuan,et al.  Exploring atomic defects in molybdenum disulphide monolayers , 2015, Nature Communications.

[10]  Bin Yu,et al.  Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. , 2015, ACS nano.

[11]  M. Eginligil,et al.  Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. , 2015, ACS nano.

[12]  Xiaodong Cui,et al.  Exciton Binding Energy of Monolayer WS2 , 2014, Scientific Reports.

[13]  Yu Huang,et al.  Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. , 2014, Nature nanotechnology.

[14]  Sefaattin Tongay,et al.  Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. , 2014, Nano letters.

[15]  A. Hirata,et al.  Chemically exfoliated ReS2 nanosheets. , 2014, Nanoscale.

[16]  Wilman Tsai,et al.  Chloride molecular doping technique on 2D materials: WS2 and MoS2. , 2014, Nano letters.

[17]  M. Dresselhaus,et al.  Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. , 2014, Nano letters.

[18]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[19]  J. Kong,et al.  Trion-induced negative photoconductivity in monolayer MoS2. , 2014, Physical review letters.

[20]  Zhixian Zhou,et al.  High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. , 2014, Nano letters.

[21]  T. Heinz,et al.  Postgrowth tuning of the bandgap of single-layer molybdenum disulfide films by sulfur/selenium exchange. , 2014, ACS nano.

[22]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[23]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[24]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[25]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[26]  Vincent Meunier,et al.  First-principles Raman spectra of MoS2, WS2 and their heterostructures. , 2014, Nanoscale.

[27]  P. Ajayan,et al.  Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. , 2014, Nano letters.

[28]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[29]  Ying-Sheng Huang,et al.  Properties of individual dopant atoms in single-layer MoS2: atomic structure, migration, and enhanced reactivity. , 2014, Advanced materials.

[30]  W. Escoffier,et al.  Optical manipulation of the exciton charge state in single-layer tungsten disulfide , 2013, 1312.1051.

[31]  Pablo Jarillo-Herrero,et al.  Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. , 2013, Nano letters.

[32]  Yuhei Miyauchi,et al.  Tunable photoluminescence of monolayer MoS₂ via chemical doping. , 2013, Nano letters.

[33]  S. Sanvito,et al.  Possible doping strategies for MoS 2 monolayers: An ab initio study , 2013 .

[34]  Simon Kurasch,et al.  From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation , 2013 .

[35]  Limin Jin,et al.  Selective Decoration of Au Nanoparticles on Monolayer MoS2 Single Crystals , 2013, Scientific Reports.

[36]  Doron Naveh,et al.  Mn-doped monolayer MoS$_2$: An atomically thin dilute magnetic semiconductor , 2013 .

[37]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature materials.

[38]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[39]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[40]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[41]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[42]  K. Jacobsen,et al.  Phonon-limited mobility inn-type single-layer MoS2from first principles , 2012 .

[43]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[44]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[45]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[46]  C. Colliex,et al.  Ab initio study of bilateral doping within the MoS2-NbS2 system , 2008, 0806.1411.

[47]  O. Krivanek,et al.  An electron microscope for the aberration-corrected era. , 2008, Ultramicroscopy.

[48]  Stephen J. Pennycook,et al.  Incoherent imaging using dynamically scattered coherent electrons , 1999 .

[49]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[50]  Thomas A. Carlson,et al.  Core electron binding energies in some Group IIIA, VB, and VIB compounds , 1973 .