Genetic algorithm-based parameter identification of a hysteretic brushless exciter model

In this paper, a parameter identification procedure for a recently proposed hysteretic brushless exciter model is discussed. The model features average-value representation of all rectification modes, and incorporation of magnetic hysteresis in the d-axis main flux path using Preisach's theory. Herein, a method for obtaining the model's parameters from the waveforms of exciter field current and main alternator terminal voltage is set forth. In particular, a genetic algorithm is employed to solve the optimization problem of minimizing the model's prediction error during a change in reference voltage level.

[1]  Francesco Alonge,et al.  Parameter identification of induction motor model using genetic algorithms , 1998 .

[2]  C. Tindall,et al.  Brushless Exciter Modeling for Small Salient Pole Alternators Using Finite Elements , 2002, IEEE Power Engineering Review.

[3]  W. J. Bonwick,et al.  Three-phase bridge rectifiers with complex source impedance , 1975 .

[4]  S.D. Sudhoff,et al.  A synchronous machine model with saturation and arbitrary rotor network representation , 2005, IEEE Transactions on Energy Conversion.

[5]  R. W. Miller,et al.  Analytical Studies of the Brushless Excitation System , 1959, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[6]  H. Razik,et al.  Identification of induction motor using a genetic algorithm and a quasi-Newton algorithm , 2000, 7th IEEE International Power Electronics Congress. Technical Proceedings. CIEP 2000 (Cat. No.00TH8529).

[7]  Dionysios C Aliprantis Advances in electric machine modeling and evolutionary parameter identification , 2003 .

[8]  K. S. Huang,et al.  Parameter identification of an induction machine using genetic algorithms , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[9]  S.D. Sudhoff,et al.  Experimental characterization procedure for a synchronous machine model with saturation and arbitrary rotor network representation , 2005, IEEE Transactions on Energy Conversion.

[10]  J. S. Edmonds,et al.  Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .

[11]  Chung-Liang Chang,et al.  Identification of excitation system models based on on-line digital measurements , 1995 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  C.C. Lee,et al.  A weighted-least-squares parameter estimator for synchronous machines , 1977, IEEE Transactions on Power Apparatus and Systems.

[14]  P. O. Bobo,et al.  An Electric Utility Brushless Excitation System , 1959, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.

[15]  Paul C. Krause,et al.  Analysis of electric machinery , 1987 .

[16]  Chiang-Tsung Huang,et al.  Identification of exciter constants using a coherence function based weighted least squares approach , 1993 .

[17]  F. Preisach Über die magnetische Nachwirkung , 1935 .

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  T. Niewierowicz,et al.  Synchronous Machine Parameters from Frequency-Response Finite-Element Simulations and Genetic Algorithms , 2001, IEEE Power Engineering Review.

[20]  S.D. Sudhoff,et al.  A brushless exciter model incorporating multiple rectifier modes and Preisach's hysteresis theory , 2006, IEEE Transactions on Energy Conversion.

[21]  J. V. Kresser,et al.  Influence of A-C reactance on voltage regulation of 6-phase rectifiers , 1953, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .