Genetic algorithm-based parameter identification of a hysteretic brushless exciter model
暂无分享,去创建一个
[1] Francesco Alonge,et al. Parameter identification of induction motor model using genetic algorithms , 1998 .
[2] C. Tindall,et al. Brushless Exciter Modeling for Small Salient Pole Alternators Using Finite Elements , 2002, IEEE Power Engineering Review.
[3] W. J. Bonwick,et al. Three-phase bridge rectifiers with complex source impedance , 1975 .
[4] S.D. Sudhoff,et al. A synchronous machine model with saturation and arbitrary rotor network representation , 2005, IEEE Transactions on Energy Conversion.
[5] R. W. Miller,et al. Analytical Studies of the Brushless Excitation System , 1959, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.
[6] H. Razik,et al. Identification of induction motor using a genetic algorithm and a quasi-Newton algorithm , 2000, 7th IEEE International Power Electronics Congress. Technical Proceedings. CIEP 2000 (Cat. No.00TH8529).
[7] Dionysios C Aliprantis. Advances in electric machine modeling and evolutionary parameter identification , 2003 .
[8] K. S. Huang,et al. Parameter identification of an induction machine using genetic algorithms , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).
[9] S.D. Sudhoff,et al. Experimental characterization procedure for a synchronous machine model with saturation and arbitrary rotor network representation , 2005, IEEE Transactions on Energy Conversion.
[10] J. S. Edmonds,et al. Trajectory sensitivity based identification of synchronous generator and excitation system parameters , 1988 .
[11] Chung-Liang Chang,et al. Identification of excitation system models based on on-line digital measurements , 1995 .
[12] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[13] C.C. Lee,et al. A weighted-least-squares parameter estimator for synchronous machines , 1977, IEEE Transactions on Power Apparatus and Systems.
[14] P. O. Bobo,et al. An Electric Utility Brushless Excitation System , 1959, Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems.
[15] Paul C. Krause,et al. Analysis of electric machinery , 1987 .
[16] Chiang-Tsung Huang,et al. Identification of exciter constants using a coherence function based weighted least squares approach , 1993 .
[17] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[18] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[19] T. Niewierowicz,et al. Synchronous Machine Parameters from Frequency-Response Finite-Element Simulations and Genetic Algorithms , 2001, IEEE Power Engineering Review.
[20] S.D. Sudhoff,et al. A brushless exciter model incorporating multiple rectifier modes and Preisach's hysteresis theory , 2006, IEEE Transactions on Energy Conversion.
[21] J. V. Kresser,et al. Influence of A-C reactance on voltage regulation of 6-phase rectifiers , 1953, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.
[22] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .