Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex

Neuroscience produces a vast amount of data from an enormous diversity of neurons. A neuronal classification system is essential to organize such data and the knowledge that is derived from them. Classification depends on the unequivocal identification of the features that distinguish one type of neuron from another. The problems inherent in this are particularly acute when studying cortical interneurons. To tackle this, we convened a representative group of researchers to agree on a set of terms to describe the anatomical, physiological and molecular features of GABAergic interneurons of the cerebral cortex. The resulting terminology might provide a stepping stone towards a future classification of these complex and heterogeneous cells. Consistent adoption will be important for the success of such an initiative, and we also encourage the active involvement of the broader scientific community in the dynamic evolution of this project.

[1]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[2]  D. Sholl Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953, Journal of anatomy.

[3]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[4]  Sholl Da,et al.  The organization of the visual cortex in the cat. , 1955 .

[5]  D. Sholl The organization of the visual cortex in the cat. , 1955, Journal of anatomy.

[6]  J. Brontë Gatenby,et al.  MATURATION OF RAT MAST CELLS , 1966, The Journal of Cell Biology.

[7]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[8]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[9]  W. Rall Electrophysiology of a dendritic neuron model. , 1962, Biophysical journal.

[10]  P. Kostyuk Synaptic mechanism of central inhibition. , 1968, Progress in brain research.

[11]  M. Colonnier Synaptic patterns on different cell types in the different laminae of the cat visual cortex. An electron microscope study. , 1968, Brain research.

[12]  V. Tennyson The Fine Structure of the Nervous System. , 1970 .

[13]  C F Tyner,et al.  The naming of neurons: applications of taxonomic theory to the study of cellular populations. , 1975, Brain, behavior and evolution.

[14]  W. Precht The synaptic organization of the brain G.M. Shepherd, Oxford University Press (1975). 364 pp., £3.80 (paperback) , 1976, Neuroscience.

[15]  J. Szentágothai The Ferrier Lecture, 1977 The neuron network of the cerebral cortex: a functional interpretation , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  A. Cowey,et al.  Combined golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey , 1981, The Journal of comparative neurology.

[17]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[18]  J. R. Hughes,et al.  Cerebral cortex. Vol. 1. Cellular components of the cerebral cortex , 1984 .

[19]  R. R. Sturrock,et al.  Problems of the Keimbahn: New Work on Mammalian Germ Cell Lineage , 1985 .

[20]  D. Schmechel,et al.  Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory‐motor cortex , 1985, The Journal of comparative neurology.

[21]  J. Lund,et al.  Anatomical organization of macaque monkey striate visual cortex. , 1988, Annual review of neuroscience.

[22]  V. Chan‐Palay,et al.  The Hippocampus : new vistas , 1989 .

[23]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[24]  A. Peters,et al.  Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. I. Morphometric analysis , 1990, Journal of neurocytology.

[25]  A. Peters,et al.  Different kinds of axon terminals forming symmetric synapses with the cell bodies and initial axon segments of layer II/III pyramidal cells. II. Synaptic junctions , 1990, Journal of neurocytology.

[26]  R. Llinás,et al.  In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Palay,et al.  The Fine Structure of the Nervous System: Neurons and Their Supporting Cells , 1991 .

[28]  R. Lorente de Nó The cerebral cortex of the mouse (a first contribution--the "acoustic" cortex). , 1992, Somatosensory & motor research.

[29]  J. Deuchars,et al.  Single axon excitatory postsynaptic potentials in neocortical interneurons exhibit pronounced paired pulse facilitation , 1993, Neuroscience.

[30]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  G. Buzsáki,et al.  Inhibitory CA1-CA3-hilar region feedback in the hippocampus. , 1994, Science.

[32]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  J. Deuchars,et al.  Properties of single axon excitatory postsynaptic potentials elicited in spiny interneurons by action potentials in pyramidal neurons in slices of rat neocortex , 1995, Neuroscience.

[34]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[35]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[36]  P. Somogyi,et al.  Massive Autaptic Self-Innervation of GABAergic Neurons in Cat Visual Cortex , 1997, The Journal of Neuroscience.

[37]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[38]  G Buzsáki,et al.  Interneurons in the Hippocampal Dentate Gyrus: an In Vivo intracellular Study , 1997, The European journal of neuroscience.

[39]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[40]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[41]  Y. Kawaguchi,et al.  Noradrenergic Excitation and Inhibition of GABAergic Cell Types in Rat Frontal Cortex , 1998, The Journal of Neuroscience.

[42]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[43]  J. Rossier,et al.  Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex , 1998, The European journal of neuroscience.

[44]  B. Sakmann,et al.  Dendritic GABA Release Depresses Excitatory Transmission between Layer 2/3 Pyramidal and Bitufted Neurons in Rat Neocortex , 1999, Neuron.

[45]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[46]  K. Fuxe,et al.  Volume transmission in the CNS and its relevance for neuropsychopharmacology. , 1999, Trends in pharmacological sciences.

[47]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[48]  D A Turner,et al.  Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns , 1999, The Journal of comparative neurology.

[49]  J. DeFelipe Chandelier cells and epilepsy. , 1999, Brain : a journal of neurology.

[50]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[51]  E. Vizi Role of high-affinity receptors and membrane transporters in nonsynaptic communication and drug action in the central nervous system. , 2000, Pharmacological reviews.

[52]  E. Welker,et al.  Neurons immunoreactive for vasoactive intestinal polypeptide in the rat primary somatosensory cortex: Morphology and spatial relationship to barrel‐related columns , 2000, The Journal of comparative neurology.

[53]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[54]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[55]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[56]  B. Sakmann,et al.  Back‐propagating action potentials mediate calcium signalling in dendrites of bitufted interneurons in layer 2/3 of rat somatosensory cortex , 2001, The Journal of physiology.

[57]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[58]  Giorgio A. Ascoli,et al.  Algorithmic Extraction of Morphological Statistics from Electronic Archives of Neuroanatomy , 2001, IWANN.

[59]  B Sakmann,et al.  AMPA Receptor Channels with Long-Lasting Desensitization in Bipolar Interneurons Contribute to Synaptic Depression in a Novel Feedback Circuit in Layer 2/3 of Rat Neocortex , 2001, The Journal of Neuroscience.

[60]  Yun Wang,et al.  Synaptic connections and small circuits involving excitatory and inhibitory neurons in layers 2-5 of adult rat and cat neocortex: triple intracellular recordings and biocytin labelling in vitro. , 2002, Cerebral cortex.

[61]  Edith Hamel,et al.  5-HT3 Receptors Mediate Serotonergic Fast Synaptic Excitation of Neocortical Vasoactive Intestinal Peptide/Cholecystokinin Interneurons , 2002, The Journal of Neuroscience.

[62]  Preface to the special issue , 2002 .

[63]  Jaap van Pelt,et al.  Measures for quantifying dendritic arborizations , 2002, Network.

[64]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[65]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Ia‐type K+ channels control action potential backpropagation , 2003, The Journal of physiology.

[66]  Hongqing Guo,et al.  Single-Cell Microarray Analysis in Hippocampus CA1: Demonstration and Validation of Cellular Heterogeneity , 2003, The Journal of Neuroscience.

[67]  J. Lacaille,et al.  Interneuron Diversity series: Hippocampal interneuron classifications – making things as simple as possible, not simpler , 2003, Trends in Neurosciences.

[68]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[69]  R. Yuste,et al.  Ca2+ imaging of mouse neocortical interneurone dendrites: Contribution of Ca2+‐permeable AMPA and NMDA receptors to subthreshold Ca2+dynamics , 2003, The Journal of physiology.

[70]  R. Yuste,et al.  Ca 2 + imaging of mouse neocortical interneurone dendrites : Contribution of Ca 2 +-permeable AMPA and NMDA receptors to subthreshold Ca 2 + dynamics , 2003 .

[71]  T. Kosaka,et al.  Ultrastructural study of gap junctions between dendrites of parvalbumin-containing GABAergic neurons in various neocortical areas of the adult rat , 2003, Neuroscience.

[72]  Rafael Yuste,et al.  Quantitative morphologic classification of layer 5 neurons from mouse primary visual cortex , 2003, The Journal of comparative neurology.

[73]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[74]  H. Swadlow Fast-spike interneurons and feedforward inhibition in awake sensory neocortex. , 2003, Cerebral cortex.

[75]  F. Valverde The organization of area 18 in the monkey , 1978, Anatomy and Embryology.

[76]  Rafael Yuste,et al.  Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting , 2004, The Journal of physiology.

[77]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[78]  P. Somogyi,et al.  Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo , 2004, Nature Neuroscience.

[79]  G. Buzsáki Large-scale recording of neuronal ensembles , 2004, Nature Neuroscience.

[80]  J. Lübke,et al.  Postsynaptic Calcium Influx at Single Synaptic Contacts between Pyramidal Neurons and Bitufted Interneurons in Layer 2/3 of Rat Neocortex Is Enhanced by Backpropagating Action Potentials , 2004, The Journal of Neuroscience.

[81]  John R. Huguenard,et al.  Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids , 2004, Nature.

[82]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[83]  Henry Markram,et al.  Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function , 2004, Trends in Neurosciences.

[84]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[85]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[86]  Javier DeFelipe,et al.  Double bouquet cell in the human cerebral cortex and a comparison with other mammals , 2005, The Journal of comparative neurology.

[87]  Giorgio A Ascoli,et al.  Developmental changes in spinal motoneuron dendrites in neonatal mice , 2005, The Journal of comparative neurology.

[88]  G. Fishell,et al.  The Temporal and Spatial Origins of Cortical Interneurons Predict Their Physiological Subtype , 2005, Neuron.

[89]  P. Wahle,et al.  Site‐specific and developmental expression of pannexin1 in the mouse nervous system , 2005, The European journal of neuroscience.

[90]  Rafael Yuste,et al.  Space matters: local and global dendritic Ca2+ compartmentalization in cortical interneurons , 2005, Trends in Neurosciences.

[91]  Ken Mackie,et al.  Endocannabinoid Signaling in Rat Somatosensory Cortex: Laminar Differences and Involvement of Specific Interneuron Types , 2005, The Journal of Neuroscience.

[92]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[93]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[94]  Alex M Thomson,et al.  Layer 6 cortico-thalamic pyramidal cells preferentially innervate interneurons and generate facilitating EPSPs. , 2006, Cerebral cortex.

[95]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[96]  S. Nelson,et al.  Potentiation of cortical inhibition by visual deprivation , 2006, Nature.

[97]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[98]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[99]  P. Somogyi,et al.  Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus , 2007, The Journal of Neuroscience.

[100]  A. Thomson,et al.  Functional Maps of Neocortical Local Circuitry , 2007, Front. Neurosci..

[101]  Z. J. Huang,et al.  Development of GABA innervation in the cerebral and cerebellar cortices , 2007, Nature Reviews Neuroscience.

[102]  Kathleen S Rockland,et al.  Long‐distance corticocortical GABAergic neurons in the adult monkey white and gray matter , 2007, The Journal of comparative neurology.

[103]  L. Krimer,et al.  Dopamine increases inhibition in the monkey dorsolateral prefrontal cortex through cell type-specific modulation of interneurons. , 2006, Cerebral cortex.

[104]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[105]  R. Douglas,et al.  Stereotypical Bouton Clustering of Individual Neurons in Cat Primary Visual Cortex , 2007, The Journal of Neuroscience.

[106]  D. Kullmann,et al.  Long-term synaptic plasticity in hippocampal interneurons , 2007, Nature Reviews Neuroscience.

[107]  A. Zaitsev,et al.  Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. , 2007, Journal of neurophysiology.

[108]  Larry W. Swanson,et al.  The neuron classification problem , 2007, Brain Research Reviews.

[109]  Alex M Thomson,et al.  Robust correlations between action potential duration and the properties of synaptic connections in layer 4 interneurones in neocortical slices from juvenile rats and adult rat and cat , 2007, The Journal of physiology.

[110]  Kathleen S Rockland,et al.  GABAergic projections from the hippocampus to the retrosplenial cortex in the rat , 2007, The European journal of neuroscience.

[111]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[112]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[113]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[114]  A. Thomson,et al.  Synaptic alpha 5 subunit-containing GABAA receptors mediate IPSPs elicited by dendrite-preferring cells in rat neocortex. , 2008, Cerebral cortex.

[115]  J. Lacaille,et al.  Long-term synaptic plasticity in hippocampal feedback inhibitory networks. , 2008, Progress in brain research.