Partial Pole Placement with Controller Optimization

An arbitrary subset (n - m) of the (n) closed loop eigenvalues of an nth order continuous time single input linear time invariant system is to be placed using full state feedback, at pre-specified locations in the complex plane. The remaining m closed loop eigenvalues can be placed anywhere inside a pre-defined region in the complex plane. This region constraint on the unspecified poles is translated into a linear matrix inequality constraint on the feedback gains through a convex inner approximation of the polynomial stability region. The closed loop locations for these m eigenvalues are optimized to obtain a minimum norm feedback gain vector. This reduces the controller effort leading to less expensive actuators required to be installed in the control system. The proposed algorithm is illustrated on a linearized model of a 4-machine, 2-area power system example.

[1]  Hadas Kress-Gazit,et al.  Temporal Logic Motion Planning for Mobile Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[2]  Debasattam Pal,et al.  Partial Pole Placement and Controller Norm Optimization over Polynomial Stability Region , 2011 .

[3]  D. Bernstein,et al.  Controller design with regional pole constraints , 1992 .

[4]  Jan H. van Schuppen,et al.  Reachability and control synthesis for piecewise-affine hybrid systems on simplices , 2006, IEEE Transactions on Automatic Control.

[5]  J. Ackermann Parameter space design of robust control systems , 1980 .

[6]  András Varga Robust and minimum norm pole assignment with periodic state feedback , 2000, IEEE Trans. Autom. Control..

[7]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[8]  Antoine Girard,et al.  Motion planning for nonlinear systems using hybridizations and robust controllers on simplices , 2008, 2008 47th IEEE Conference on Decision and Control.

[9]  Dimitri Peaucelle,et al.  SEDUMI INTERFACE 1.02: a tool for solving LMI problems with SEDUMI , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[10]  B. Pal,et al.  Robust Control in Power Systems , 2005 .

[11]  E. Chu,et al.  Optimization and pole assignment in control system design , 2001 .

[12]  Nancy Nichols Robustness in partial pole placement , 1987 .

[13]  Pierre Apkarian,et al.  Robust pole placement in LMI regions , 1999, IEEE Trans. Autom. Control..

[14]  Thomas Kailath,et al.  Linear Systems , 1980 .

[15]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[16]  Balarko Chaudhuri,et al.  Partial pole placement with minimum norm controller , 2010, 49th IEEE Conference on Decision and Control (CDC).

[17]  Dimitri Peaucelle,et al.  Ellipsoidal approximation of the stability domain of a polynomial , 2001, 2001 European Control Conference (ECC).

[18]  Imad M. Jaimoukha,et al.  A Study on LQG/LTR Control for Damping Inter-Area Oscillations in Power Systems , 2007, IEEE Transactions on Control Systems Technology.

[19]  Michael Sebek,et al.  Positive polynomials and robust stabilization with fixed-order controllers , 2003, IEEE Trans. Autom. Control..

[20]  R. Longchamp,et al.  Fixed-Order Controller Design for Polytopic Systems Using Rank Deficiency in a Sylvester Matrix , 2008 .

[21]  N. Nichols,et al.  Robust pole assignment in linear state feedback , 1985 .

[22]  Mireille E. Broucke,et al.  Necessary and Sufficient Conditions for Reachability on a Simplex , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[23]  Alireza Karimi,et al.  Robust control of polytopic systems by convex optimization , 2007, 2007 European Control Conference (ECC).

[24]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[25]  Fuwen Yang,et al.  Fixed-Order Robust $H_{\infty}$ Controller Design With Regional Pole Assignment , 2007, IEEE Transactions on Automatic Control.

[26]  T. Henzinger,et al.  Algorithmic Analysis of Nonlinear Hybrid Systems , 1998, CAV.