Multiresolution schemes for conservation laws
暂无分享,去创建一个
Wolfgang Dahmen | Siegfried Müller | Birgit Gottschlich-Müller | W. Dahmen | S. Müller | Birgit Gottschlich-Müller
[1] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[2] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[3] E. Süli,et al. A dual graph-norm refinement indicator for finite volume approximations of the Euler equations , 1998 .
[4] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[5] Vipin Kumar,et al. Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.
[6] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[7] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[8] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[9] Björn Sjögreen,et al. Numerical experiments with the multiresolution scheme for the compressible Euler equations , 1995 .
[10] J. Edwards,et al. Low-Diffusion Flux-Splitting Methods for Flows at All Speeds , 1997 .
[11] Ralf Hartmann. Adaptive Fe Methods for Conservation Equations , 2001 .
[12] M. Farge,et al. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis , 1999 .
[13] Kai Schneider,et al. Coherent Vortex Simulation (CVS), A Semi-Deterministic Turbulence Model Using Wavelets , 2001 .
[14] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[15] Thomas Sonar,et al. Dynamic adaptivity and residual control in unsteady compressible flow computation , 1994 .
[16] R. LeVeque. Numerical methods for conservation laws , 1990 .
[17] Siegfried Müller,et al. Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.
[18] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[19] S. Osher,et al. Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .
[20] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[21] Marsha Berger,et al. Three-Dimensional Adaptive Mesh Refinement for Hyperbolic Conservation Laws , 1994, SIAM J. Sci. Comput..
[22] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems IV: nonlinear problems , 1995 .
[23] Rolf Rannacher,et al. An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.
[24] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[25] A. Harten. Adaptive Multiresolution Schemes for Shock Computations , 1994 .
[26] Sidi Mahmoud Kaber,et al. Multiresolution Analysis on Triangles: Application to Gas Dynamics , 2001 .
[27] Vipin Kumar,et al. A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering , 1998, J. Parallel Distributed Comput..
[28] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[29] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[30] P. Colella,et al. Local adaptive mesh refinement for shock hydrodynamics , 1989 .
[31] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[32] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[33] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[34] Jinhee Jeong,et al. On the identification of a vortex , 1995, Journal of Fluid Mechanics.
[35] Barna L. Bihari,et al. Multiresolution Schemes for the Numerical Solution of 2-D Conservation Laws I , 1997, SIAM J. Sci. Comput..
[36] S. Osher,et al. Numerical approximations to nonlinear conservation laws with locally varying time and space grids , 1983 .
[37] Barna L. Bihari,et al. Multiresolution Schemes for Conservation Laws with Viscosity , 1996 .
[38] Rolf Rannacher,et al. A Feed-Back Approach to Error Control in Finite Element Methods: Basic Analysis and Examples , 1996 .
[39] Kai Schneider,et al. Numerical simulation of a mixing layer in an adaptive wavelet basis , 2000 .
[40] R. LeVeque,et al. Adaptive Mesh Refinement Using Wave-Propagation Algorithms for Hyperbolic Systems , 1998 .
[41] A. Harti. Discrete multi-resolution analysis and generalized wavelets , 1993 .
[42] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[43] J. J. Quirk,et al. An adaptive grid algorithm for computational shock hydrodynamics , 1991 .
[44] A. Brandt. Multi-Level Adaptive Techniques (MLAT) for Partial Differential Equations: Ideas and Software , 1977 .