Foundations for Measuring Volume Rendering Quality

The goal of this paper is to provide a foundation for objectively comparing volume rendered images. The key elements of the foundation are: (1) a rigorous specification of all the parameters that need to be specified to define the conditions under which a volume rendered image is generated; (2) a methodology for difference classification, including a suite of functions or metrics to quantify and classify the difference between two volume rendered images that will support an analysis of the relative importance of particular differences. The results of this method can be used to study the changes caused by modifying particular parameter values, to compare and quantify changes between images of similar data sets rendered in the same way, and even to detect errors in the design, implementation or modification of a volume rendering system. If one has a benchmark image, for example one created by a high accuracy volume rendering system, the method can be used to evaluate the accuracy of a given image.

[1]  Pamela Walatka,et al.  FAST User Guide , 1994 .

[2]  Edward R. Tufte,et al.  The Visual Display of Quantitative Information , 1986 .

[3]  Jane Wilhelms,et al.  Multi-dimensional trees for controlled volume rendering and compression , 1994, VVS '94.

[4]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[5]  Charles A. Poynton,et al.  Gamma and Its Disguises : The Nonlinear Mappings of Intensity in Perception, CRTs, Film, and Video , 1993 .

[6]  Kyle J. Myers,et al.  Model observers for assessment of image quality , 1993 .

[7]  Daniel Cohen-Or,et al.  Volume graphics , 1993, Computer.

[8]  Bernd Hamann,et al.  Visualizing and modeling scattered multivariate data , 1991, IEEE Computer Graphics and Applications.

[9]  Roland T. Chin,et al.  Quantitative evaluation of some edge-preserving noise-smoothing techniques , 1983, Comput. Vis. Graph. Image Process..

[10]  Michael Kass,et al.  Error-bounded antialiased rendering of complex environments , 1994, SIGGRAPH.

[11]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[12]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[13]  Krishna Thyagarajan,et al.  Optical Electronics: Spatial frequency filtering , 1989 .

[14]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[15]  J. Challinger,et al.  Direct volume rendering of curvilinear volumes , 1990, VVS.

[16]  Peter L. Williams Interactive splatting of nonrectilinear volumes , 1992, Proceedings Visualization '92.

[17]  A. Globus,et al.  Fourteen Ways to Say Nothing with Scientific Visualization , 1994, Computer.

[18]  Gary Mastin,et al.  Adaptive filters for digital image noise smoothing: An evaluation , 1985, Comput. Vis. Graph. Image Process..

[19]  Suresh K. Lodha,et al.  VERITY VISUALIZATION: VISUAL MAPPINGS , 1995 .

[20]  E. J. Farrell Extracting meaning from complex data: Processing, display, interaction; Proceedings of the Meeting, Santa Clara, CA, Feb. 14-16, 1990 , 1990 .

[21]  Marc Levoy,et al.  A hybrid ray tracer for rendering polygon and volume data , 1990, IEEE Computer Graphics and Applications.

[22]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[23]  Jane Wilhelms,et al.  Rapid exploration of curvilinear grids using direct volume rendering , 1993, Proceedings Visualization '93.

[24]  H H Barrett,et al.  Objective assessment of image quality: effects of quantum noise and object variability. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[25]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[26]  Xiaoyang Mao,et al.  Splatting of curvilinear volumes , 1995, Proceedings Visualization '95.

[27]  John A. Saghri,et al.  Image Quality Measure Based On A Human Visual System Model , 1989 .

[28]  Ernest L. Hall,et al.  A Nonlinear Model for the Spatial Characteristics of the Human Visual System , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[30]  Marc Levoy,et al.  Frequency domain volume rendering , 1993, SIGGRAPH.

[31]  Edward R. Tufte,et al.  Envisioning Information , 1990 .

[32]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[33]  Christopher Giertsen,et al.  Creative parameter selection for volume visualization , 1992, Comput. Animat. Virtual Worlds.

[34]  Craig Upson,et al.  V-buffer: visible volume rendering , 1988, SIGGRAPH.

[35]  Marc Levoy,et al.  Interactive visualization of 3D medical data , 1989, Computer.

[36]  David S. Ebert,et al.  Grouping Volume Renderers for Enhanced Visualization in Computational Fluid Dynamics , 1995, IEEE Trans. Vis. Comput. Graph..

[37]  Christopher Giertsen Direct volume rendering of multiple scalar fields , 1994, Comput. Animat. Virtual Worlds.

[38]  Al Globus,et al.  Evaluation of visualization software , 1995, COMG.

[39]  Ulrich Neumann Volume reconstruction and parallel rendering algorithms: a comparative analysis , 1993 .

[40]  Michael P. Garrity Raytracing irregular volume data , 1990, VVS.

[41]  Christopher Giertsen,et al.  Volume visualization of sparse irregular meshes , 1992, IEEE Computer Graphics and Applications.

[42]  Judy Challinger,et al.  Direct volume rendering of curvilinear volumes , 1990, SIGGRAPH 1990.

[43]  Patrick C. Teo,et al.  Perceptual image distortion , 1994, Proceedings of 1st International Conference on Image Processing.

[44]  Heinrich Müller,et al.  Image warping with scattered data interpolation , 1995, IEEE Computer Graphics and Applications.

[45]  Norman B. Nill,et al.  A Visual Model Weighted Cosine Transform for Image Compression and Quality Assessment , 1985, IEEE Trans. Commun..

[46]  Pat Hanrahan,et al.  Hierarchical splatting: a progressive refinement algorithm for volume rendering , 1991, SIGGRAPH.

[47]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[48]  P. Hanrahan,et al.  Area and volume coherence for efficient visualization of 3D scalar functions , 1990, VVS.

[49]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[50]  Lee Westover,et al.  Interactive volume rendering , 1989, VVS '89.

[51]  J. Challinger,et al.  Parallel volume rendering for curvilinear volumes , 1992, Proceedings Scalable High Performance Computing Conference SHPCC-92..

[52]  David J. Sakrison,et al.  The effects of a visual fidelity criterion of the encoding of images , 1974, IEEE Trans. Inf. Theory.

[53]  Richard S. Gallagher,et al.  An efficient 3-D visualization technique for finite element models and other coarse volumes , 1989, SIGGRAPH.

[54]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[55]  Bruce Lucas A scientific visualization renderer , 1992, Proceedings Visualization '92.

[56]  Harry L. Snyder,et al.  Image Quality: Measures and Visual Performance , 1985 .

[57]  D.J. Granrath,et al.  The role of human visual models in image processing , 1981, Proceedings of the IEEE.

[58]  Allan Tuchman,et al.  Fast volume rendering with embedded geometric primitives , 1992 .

[59]  William E. Glenn Digital Image Compression Based on Visual Perception and Scene Properties , 1993 .