LIMIT THEOREMS FOR RADIAL RANDOM WALKS ON EUCLIDEAN SPACES OF HIGH DIMENSIONS
暂无分享,去创建一个
[1] C. Herz. BESSEL FUNCTIONS OF MATRIX ARGUMENT , 1955 .
[2] M. Voit. Central Limit Theorems for Radial Random Walks on p x q Matrices for p , 2012 .
[3] R. Jewett. Spaces with an abstract convolution of measures , 1975 .
[4] A. Rukhin. Matrix Variate Distributions , 1999, The Multivariate Normal Distribution.
[5] J. Norris. Appendix: probability and measure , 1997 .
[6] Vidmantas Bentkus,et al. Dependence of the Berry-Esseen estimate on the dimension , 1986 .
[7] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] F. Götze,et al. Uniform rates of convergence in the CLT for quadratic forms in multidimensional spaces , 1997 .
[10] Michael Voit,et al. Limit theorems for radial random walks on p × q‐matrices as p tends to infinity , 2007 .
[11] Patrick Billingsley,et al. Probability and Measure. , 1986 .
[12] M. Rösler. Bessel convolutions on matrix cones , 2005, Compositio Mathematica.
[13] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[14] Kostas Triantafyllopoulos,et al. On the central moments of the multidimensional Gaussian distribution , 2003 .