Scotch and libScotch 5.0 User's Guide

This document describes the capabilities and operations of Scotch and libScotch, a software package and a software library devoted to static mapping, partitioning, and sparse matrix block ordering of graphs and meshes/hypergraphs. It gives brief descriptions of the algorithms, details the input/output formats, instructions for use, installation procedures, and provides a number of examples. Scotch is distributed as free/libre software, and has been designed such that new partitioning or ordering methods can be added in a straightforward manner. It can therefore be used as a testbed for the easy and quick coding and testing of such new methods, and may also be redistributed, as a library, along with third-party software that makes use of it, either in its original or in updated forms.

[1]  John G. Lewis,et al.  Orderings for Parallel Sparse Symmetric Factorization , 1987, PP.

[2]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[3]  Vipin Kumar,et al.  Scalable Parallel Algorithms for Sparse Linear Systems , 1997 .

[4]  Norman E. Gibbs,et al.  A Comparison of Several Bandwidth and Profile Reduction Algorithms , 1976, TOMS.

[5]  Joseph W. H. Liu,et al.  A Comparison of Three Column-Based Distributed Sparse Factorization Schemes. , 1990 .

[6]  F. Pellegrini,et al.  Static mapping by dual recursive bipartitioning of process architecture graphs , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[7]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[8]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[9]  Bruce Hendrickson,et al.  Skewed Graph Partitioning , 1997, PP.

[10]  R. F. Boisvert,et al.  The Matrix Market Exchange Formats: Initial Design | NIST , 1996 .

[11]  Anoop Gupta,et al.  An efficient block-oriented approach to parallel sparse Cholesky factorization , 1993, Supercomputing '93. Proceedings.

[12]  D. Rose,et al.  Generalized nested dissection , 1977 .

[13]  Bruce Hendrickson,et al.  Improving the Run Time and Quality of Nested Dissection Ordering , 1998, SIAM J. Sci. Comput..

[14]  Michael T. Heath,et al.  Sparse Cholesky factorization on a local-memory multiprocessor , 1988 .

[15]  Al Geist,et al.  Task scheduling for parallel sparse Cholesky factorization , 1990, International Journal of Parallel Programming.

[16]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[17]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[18]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[19]  J. Ramanujam,et al.  Task allocation onto a hypercube by recursive mincut bipartitioning , 1990, C3P.

[20]  Martin G. Everett,et al.  Partitioning & Mapping of Unstructured Meshes to Parallel Machine Topologies , 1995, IRREGULAR.

[21]  Cleve Ashcraft,et al.  Compressed Graphs and the Minimum Degree Algorithm , 1995, SIAM J. Sci. Comput..

[22]  Patrick Amestoy,et al.  Hybridizing Nested Dissection and Halo Approximate Minimum Degree for Efficient Sparse Matrix Ordering , 1999, Concurr. Pract. Exp..

[23]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[24]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[25]  P. Sadayappan,et al.  Task allocation onto a hypercube by recursive mincut bipartitioning , 1988, C3P.

[26]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[27]  François Pellegrini,et al.  Improvement of the Efficiency of Genetic Algorithms for Scalable Parallel Graph Partitioning in a Multi-level Framework , 2006, Euro-Par.

[28]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[29]  Manuel Laguna,et al.  A Greedy Randomized Adaptive Search Procedure for the Two-Partition Problem , 1994, Oper. Res..

[30]  Steven Warren Hammond,et al.  Mapping unstructured grid computations to massively parallel computers , 1992 .

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[33]  Jean Roman,et al.  Sparse Matrix Ordering with SCOTCH , 1997, HPCN Europe.

[34]  Vipin Kumar,et al.  Highly Scalable Parallel Algorithms for Sparse Matrix Factorization , 1997, IEEE Trans. Parallel Distributed Syst..

[35]  Robert Schreiber,et al.  Scalability of Sparse Direct Solvers , 1993 .

[36]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[37]  J. W. Walker,et al.  Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .

[38]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[39]  Iain S. Duff,et al.  On Algorithms for Obtaining a Maximum Transversal , 1981, TOMS.

[40]  W. Daniel Hillis,et al.  The Network Architecture of the Connection Machine CM-5 , 1996, J. Parallel Distributed Comput..

[41]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[42]  François Pellegrini,et al.  A Parallelisable Multi-level Banded Diffusion Scheme for Computing Balanced Partitions with Smooth Boundaries , 2007, Euro-Par.

[43]  Robert Schreiber,et al.  Improved load distribution in parallel sparse Cholesky factorization , 1994, Proceedings of Supercomputing '94.

[44]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[45]  Alan George,et al.  The Evolution of the Minimum Degree Ordering Algorithm , 1989, SIAM Rev..

[46]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[47]  David H. C. Du,et al.  Performance evaluation of the CM-5 interconnection network , 1993, Digest of Papers. Compcon Spring.

[48]  Dafydd Gibbon,et al.  1 User’s guide , 1998 .

[49]  Yousef Saad,et al.  High Performance Complete and Incomplete Factorizations for Very Large Sparse Systems by using Scotch and PaStiX softwares , 2004 .

[50]  Jean Roman,et al.  SCOTCH: A Software Package for Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs , 1996, HPCN Europe.

[51]  Bruce Hendrickson,et al.  An empirical study of static load balancing algorithms , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[52]  F. Pellegrini,et al.  Experimental Analysis of the Dual Recursive Bipartitioning Algorithm for Static Mapping , 1996 .

[53]  P. Charrier,et al.  Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées , 1989 .

[54]  Edward Rothberg Performance of Panel and Block Approaches to Sparse Cholesky Factorization on the iPSC/860 and Paragon Multicomputers , 1996, SIAM J. Sci. Comput..