On geometric constructions of (k, g)-graphs

We give new constructions for k-regular graphs of girth 6, 8 and 12 with a small number of vertices. The key idea is to start with a generalized n-gon and delete some lines and points to decrease the valency of the incidence graph.

[1]  Alan J. Hoffman,et al.  On Moore Graphs with Diameters 2 and 3 , 1960, IBM J. Res. Dev..

[2]  R. M. Damerell On Moore graphs , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[4]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[5]  Juan José Montellano-Ballesteros,et al.  On upper bounds and connectivity of cages , 2007, Australas. J Comb..

[6]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[7]  Felix Lazebnik,et al.  New upper bounds on the order of cages , 1996, Electron. J. Comb..

[8]  Walter Feit,et al.  The nonexistence of certain generalized polygons , 1964 .

[9]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[10]  Marialuisa J. de Resmini On 3-Blocking Sets in Projective Planes , 1987 .

[11]  W. G. Brown On Hamiltonian Regular Graphs of Girth Six , 1967 .

[12]  Vito Napolitano,et al.  Íëìêêääëááae Âçíêaeaeä Ç Çååáaeaeìçêááë Îóðùññ ¿½´¾¼¼¼µ¸è× ½½½ß¾¼¼ , 2022 .

[13]  Pak-Ken Wong,et al.  Cages - a survey , 1982, J. Graph Theory.

[14]  Baer subspaces in the n dimensional projective space , 1983 .

[15]  Tamás Szőnyi,et al.  Lacunary Polynomials, Multiple Blocking Sets and Baer Subplanes , 1999 .

[16]  Francesco Kàrteszi Piani finiti ciclici come risoluzioni di un certo problema di minimo. , 1960 .

[17]  A. Bruen Blocking Sets in Finite Projective Planes , 1971 .