Structural changes in femtosecond laser modified regions inside fused silica

Structural characterization of photomodified microvolumes formed by tightly focused femtosecond laser pulses inside silica glass was carried out using synchrotron x-ray diffraction. The observed distinct separation between the O?O and Si?Si pair correlation peaks can be interpreted as a phase separation induced by microexplosions at the focal volume. The mechanisms of structural transitions induced by femtosecond laser pulses inside dielectrics are discussed.

[1]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[2]  Saulius Juodkazis,et al.  Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica , 1999 .

[3]  Y. Ohishi,et al.  The Pyrite-Type High-Pressure Form of Silica , 2005, Science.

[4]  Saulius Juodkazis,et al.  Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses , 2003 .

[5]  A. Oganov,et al.  Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle , 2006 .

[6]  H. Schaefer,et al.  A Stable Silicon(0) Compound with a Si=Si Double Bond , 2008, Science.

[7]  S. Kohara,et al.  Intermediate-range order in vitreous SiO2 and GeO2 , 2005 .

[8]  Andreas Tünnermann,et al.  Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser , 2009 .

[9]  Saulius Juodkazis,et al.  Is the nano-explosion really microscopic? , 2009 .

[10]  Artem R Oganov,et al.  The high-pressure phase of alumina and implications for Earth's D'' layer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Y. Ohishi,et al.  Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions , 2007 .

[12]  Saulius Juodkazis,et al.  Void formation in glasses , 2007 .

[13]  Georg Kresse,et al.  High Pressure Polymorphism in Silica , 1998 .

[14]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[15]  Stephen Ho,et al.  Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.

[16]  Denise M. Krol,et al.  Femtosecond laser modification of glass , 2008 .

[17]  Paul F. McMillan,et al.  New materials from high-pressure experiments , 2002, Nature materials.

[18]  F. Komori,et al.  Adsorption States and Dissociation Processes of Oxygen Molecules on Cu(100) at Low Temperature , 2007 .

[19]  Saulius Juodkazis,et al.  Void recording in silica , 2006 .

[20]  Jurriaan Schmitz,et al.  A silicon-based electrical source of surface plasmon polaritons. , 2010, Nature materials.

[21]  W. H. Baur Straight Si–O–Si bridging bonds do exist in silicates and silicon dioxide polymorphs , 1980 .

[22]  Monte B. Boisen,et al.  Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule , 1994 .

[23]  Saulius Juodkazis,et al.  Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications , 2009 .

[24]  Saulius Juodkazis,et al.  Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids , 2006 .

[25]  Saulius Juodkazis,et al.  Formation of embedded patterns in glasses using femtosecond irradiation , 2004 .

[26]  Y. Ohishi,et al.  Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8 , 2008 .

[27]  R Osellame,et al.  Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing. , 2002, Optics letters.

[28]  James A. Piper,et al.  Ultrafast laser written active devices , 2009 .

[29]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[30]  T. Shankland,et al.  Laboratory‐based electrical conductivity in the Earth's mantle , 2000 .

[31]  W. H. Baur Silicon–oxygen bond lengths, bridging angles Si–O–Si and synthetic low tridymite , 1977 .

[32]  Kazuyoshi Itoh,et al.  Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate) , 2009 .

[33]  Minghui Hong,et al.  Laser precision engineering: from microfabrication to nanoprocessing , 2010 .