Structural changes in femtosecond laser modified regions inside fused silica
暂无分享,去创建一个
Saulius Juodkazis | Andrei Rode | Yasuo Ohishi | Shinji Kohara | Y. Ohishi | A. Saito | A. Rode | S. Kohara | S. Juodkazis | A. Vailionis | V. Mizeikis | Norihisa Hirao | Akira Saito | Arthuras Vailionis | Vyngantas Mizeikis | N. Hirao
[1] Qianfan Xu,et al. Micrometre-scale silicon electro-optic modulator , 2005, Nature.
[2] Saulius Juodkazis,et al. Luminescence and defect formation by visible and near-infrared irradiation of vitreous silica , 1999 .
[3] Y. Ohishi,et al. The Pyrite-Type High-Pressure Form of Silica , 2005, Science.
[4] Saulius Juodkazis,et al. Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses , 2003 .
[5] A. Oganov,et al. Stability and compressibility of the high-pressure phases of Al2O3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle , 2006 .
[6] H. Schaefer,et al. A Stable Silicon(0) Compound with a Si=Si Double Bond , 2008, Science.
[7] S. Kohara,et al. Intermediate-range order in vitreous SiO2 and GeO2 , 2005 .
[8] Andreas Tünnermann,et al. Femtosecond laser written stress-induced Nd:Y3Al5O12 (Nd:YAG) channel waveguide laser , 2009 .
[9] Saulius Juodkazis,et al. Is the nano-explosion really microscopic? , 2009 .
[10] Artem R Oganov,et al. The high-pressure phase of alumina and implications for Earth's D'' layer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[11] Y. Ohishi,et al. Structural studies of disordered materials using high-energy x-ray diffraction from ambient to extreme conditions , 2007 .
[12] Saulius Juodkazis,et al. Void formation in glasses , 2007 .
[13] Georg Kresse,et al. High Pressure Polymorphism in Silica , 1998 .
[14] S. Nolte,et al. Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .
[15] Stephen Ho,et al. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides. , 2008, Optics express.
[16] Denise M. Krol,et al. Femtosecond laser modification of glass , 2008 .
[17] Paul F. McMillan,et al. New materials from high-pressure experiments , 2002, Nature materials.
[18] F. Komori,et al. Adsorption States and Dissociation Processes of Oxygen Molecules on Cu(100) at Low Temperature , 2007 .
[19] Saulius Juodkazis,et al. Void recording in silica , 2006 .
[20] Jurriaan Schmitz,et al. A silicon-based electrical source of surface plasmon polaritons. , 2010, Nature materials.
[21] W. H. Baur. Straight Si–O–Si bridging bonds do exist in silicates and silicon dioxide polymorphs , 1980 .
[22] Monte B. Boisen,et al. Framework silica structures generated using simulated annealing with a potential energy function based on an H6Si2O7 molecule , 1994 .
[23] Saulius Juodkazis,et al. Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications , 2009 .
[24] Saulius Juodkazis,et al. Laser-induced microexplosion confined in a bulk of silica: formation of nanovoids , 2006 .
[25] Saulius Juodkazis,et al. Formation of embedded patterns in glasses using femtosecond irradiation , 2004 .
[26] Y. Ohishi,et al. Highly intense monochromatic X-ray diffraction facility for high-pressure research at SPring-8 , 2008 .
[27] R Osellame,et al. Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing. , 2002, Optics letters.
[28] James A. Piper,et al. Ultrafast laser written active devices , 2009 .
[29] Frank Caruso,et al. Nanoengineering of particle surfaces. , 2001 .
[30] T. Shankland,et al. Laboratory‐based electrical conductivity in the Earth's mantle , 2000 .
[31] W. H. Baur. Silicon–oxygen bond lengths, bridging angles Si–O–Si and synthetic low tridymite , 1977 .
[32] Kazuyoshi Itoh,et al. Increasing diffraction efficiency by heating phase gratings formed by femtosecond laser irradiation in poly(methyl methacrylate) , 2009 .
[33] Minghui Hong,et al. Laser precision engineering: from microfabrication to nanoprocessing , 2010 .