Individual versus collective cognition in social insects

ABSTRACT The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition at the level of the colony. To achieve collective cognition, a group can draw on two different sources: individual cognition and the connectivity between individuals. Computation in neural networks, for example, is attributed more to sophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is because individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony. Furthermore, involved communication patterns seem difficult to implement in a group of insects as they lack a clear network structure. This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Summary: This Review discusses how social insect colonies draw on both the cognition of their individual members and the interaction networks between these individuals to form collective cognition.

[1]  Walter R. Tschinkel,et al.  The nest architecture of the Florida harvester ant, Pogonomyrmex badius , 2004, Journal of insect science.

[2]  M. Cammaerts,et al.  Food recruitment strategies of the ants Myrmica sabuleti and Myrmica ruginodis , 1980, Behavioural Processes.

[3]  Shaowu Zhang,et al.  Honeybee dances communicate distances measured by optic flow , 2001, Nature.

[4]  Kumar Krishna,et al.  Additional Distributional Records of Ambystoma Laterale, A. Jeffersonianum (Amphibia: Caudata) and Their Unisexual Kleptogens in Northeastern North America , 2008 .

[5]  A. Emerson,et al.  Social Coordination and the Superorganism , 1939 .

[6]  P. Howse,et al.  The mass recruitment system of the leaf cutting ant, Atta cephalotes (L.) , 1979, Animal Behaviour.

[7]  Thomas D. Seeley,et al.  Fever in honeybee colonies , 2000, Naturwissenschaften.

[8]  T. Seeley The Wisdom of the Hive , 1995 .

[9]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[10]  Samuel Ellis,et al.  A Simple Threshold Rule Is Sufficient to Explain Sophisticated Collective Decision-Making , 2011, PloS one.

[11]  H. Topoff,et al.  Avoiding predation by army ants: Defensive behaviours of three ant species of the genus Camponotus , 1981, Animal Behaviour.

[12]  F. Attneave,et al.  The Organization of Behavior: A Neuropsychological Theory , 1949 .

[13]  Kevin M Schultz,et al.  The mechanism of flight guidance in honeybee swarms: subtle guides or streaker bees? , 2008, Journal of Experimental Biology.

[14]  Úna C. Farrell,et al.  Exceptionally Preserved 450-Million-Year-Old Ordovician Ostracods with Brood Care , 2014, Current Biology.

[15]  N. Franks,et al.  Knowledgeable individuals lead collective decisions in ants , 2011, Journal of Experimental Biology.

[16]  NIGEL R FRANKS,et al.  Self-organizing nest construction in ants: individual worker behaviour and the nest's dynamics , 1997, Animal Behaviour.

[17]  Anna Dornhaus,et al.  Spatial organization and division of labour in the bumblebee Bombus impatiens , 2009, Animal Behaviour.

[18]  G. J. Blomquist,et al.  Ecological, behavioral, and biochemical aspects of insect hydrocarbons. , 2005, Annual review of entomology.

[19]  Amos Korman,et al.  Confidence Sharing: An Economic Strategy for Efficient Information Flows in Animal Groups , 2014, PLoS Comput. Biol..

[20]  Thomas S. Collett,et al.  How do insects use path integration for their navigation? , 2000, Biological Cybernetics.

[21]  Ondřej Jiříček,et al.  Complex alarm strategy in the most basal termite species , 2015, Behavioral Ecology and Sociobiology.

[22]  X. Cerdá,et al.  Cooperative prey-retrieving in the ant Cataglyphis floricola: an unusual short-distance recruitment , 2010, Insectes Sociaux.

[23]  Hunter King,et al.  Termite mounds harness diurnal temperature oscillations for ventilation , 2015, Proceedings of the National Academy of Sciences.

[24]  E. Tibbetts Visual signals of individual identity in the wasp Polistes fuscatus , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Nigel R Franks,et al.  Flexible task allocation and the organization of work in ants , 2009, Proceedings of the Royal Society B: Biological Sciences.

[26]  Guy Theraulaz,et al.  Stigmergic construction and topochemical information shape ant nest architecture , 2016, Proceedings of the National Academy of Sciences.

[27]  S. Behmer,et al.  Animal Behaviour: Feeding the Superorganism , 2009, Current Biology.

[28]  D. Sumpter The principles of collective animal behaviour , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  D. Evans,et al.  Book Reviews: Insect Defenses. Adaptive Mechanisms and Strategies of Prey and Predators. , 1990 .

[30]  D. F. Howard,et al.  The flow of food in colonies of the fire ant, Solenopsis invicta: a multifactorial study , 1981 .

[31]  Antoine Wystrach,et al.  Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit , 2013, Proceedings of the Royal Society B: Biological Sciences.

[32]  S. Pratt,et al.  Rationality in collective decision-making by ant colonies , 2009, Proceedings of the Royal Society B: Biological Sciences.

[33]  Anthony Raw,et al.  The biology of the solitary bee Osmia rufa (L.) (Megachilidae) , 2009 .

[34]  S. Pratt,et al.  Groups have a larger cognitive capacity than individuals , 2012, Current Biology.

[35]  Pekka Orponen,et al.  Continuous-Time Symmetric Hopfield Nets Are Computationally Universal , 2003, Neural Computation.

[36]  Achim Gathmann,et al.  Foraging ranges of solitary bees , 2002 .

[37]  Chris Tofts,et al.  Foraging for work: how tasks allocate workers , 1994, Animal Behaviour.

[38]  Tomer J. Czaczkes,et al.  Cooperative transport in ants (Hymenoptera: Formicidae) and elsewhere , 2013 .

[39]  L. Brower,et al.  Monarch butterfly orientation: missing pieces of a magnificent puzzle , 1996, The Journal of experimental biology.

[40]  Eamonn B. Mallon,et al.  An agent-based model of collective nest choice by the ant Temnothorax albipennis , 2005, Animal Behaviour.

[41]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[42]  Mats G. Nordahl,et al.  Universal Computation in Simple One-Dimensional Cellular Automata , 1990, Complex Syst..

[43]  B. Dickson Wired for Sex: The Neurobiology of Drosophila Mating Decisions , 2008, Science.

[44]  A. Crespi,et al.  Tracking Individuals Shows Spatial Fidelity Is a Key Regulator of Ant Social Organization , 2013, Science.

[45]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[46]  J. Darlington,et al.  Termite Nests: Architecture, Regulation and Defence , 2000 .

[47]  Ofer Feinerman,et al.  Ant groups optimally amplify the effect of transiently informed individuals , 2015, Nature Communications.

[48]  J. Fewell,et al.  Models of division of labor in social insects. , 2001, Annual review of entomology.

[49]  S. Robson,et al.  Transient division of labor and behavioral specialization in the ant Formica schaufussi , 2002, Naturwissenschaften.

[50]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[51]  T. O. Richardson,et al.  Radio tagging reveals the roles of corpulence, experience and social information in ant decision making , 2009, Behavioral Ecology and Sociobiology.

[52]  Eamonn B. Mallon,et al.  Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants , 2003, Animal Behaviour.

[53]  E. Morgan Trail pheromones of ants. , 2009 .

[54]  Raphaël Jeanson,et al.  Use of radio-tagging to map spatial organization and social interactions in insects , 2011, Journal of Experimental Biology.

[55]  Ofer Feinerman,et al.  Ant trophallactic networks: simultaneous measurement of interaction patterns and food dissemination , 2015, Scientific Reports.

[56]  Omer Reingold,et al.  How Well Do Random Walks Parallelize? , 2009, APPROX-RANDOM.

[57]  Guy Theraulaz,et al.  A Brief History of Stigmergy , 1999, Artificial Life.

[58]  S. N. Fry,et al.  Sequence learning by honeybees , 1993, Journal of Comparative Physiology A.

[59]  S. Pratt,et al.  Emergence of group rationality from irrational individuals , 2011 .

[60]  Robin I. M. Dunbar,et al.  Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality , 2010, Proceedings of the National Academy of Sciences.

[61]  M. Elgar,et al.  Evolution of cuticular hydrocarbon diversity in ants , 2011, Journal of evolutionary biology.

[62]  Brian L. Fisher,et al.  Evaluating alternative hypotheses for the early evolution and diversification of ants , 2006, Proceedings of the National Academy of Sciences.

[63]  K. Frisch Bees: their vision, chemical senses, and language , 1950 .

[64]  P. Visscher Group decision making in nest-site selection among social insects. , 2007, Annual review of entomology.

[65]  Thomas Schlegel,et al.  Stop Signals Provide Cross Inhibition in Collective Decision-making , 2022 .

[66]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[67]  F. Roces,et al.  Stridulation in leaf-cutting ants , 1993, Naturwissenschaften.

[68]  Moshe Abeles,et al.  Synfire chains , 2009, Scholarpedia.

[69]  Noga Alon,et al.  Many random walks are faster than one , 2007, SPAA '08.

[70]  Ofer Feinerman,et al.  Experience, corpulence and decision making in ant foraging , 2012, Journal of Experimental Biology.

[71]  D. McShea,et al.  Individual versus social complexity, with particular reference to ant colonies , 2001, Biological reviews of the Cambridge Philosophical Society.

[72]  Thomas D. Seeley,et al.  Colony Defense Strategies of the Honeybees in Thailand , 1982 .

[73]  E. Wilson,et al.  The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies , 2008 .

[74]  Scott Camazine,et al.  The regulation of pollen foraging by honey bees: how foragers assess the colony's need for pollen , 1993, Behavioral Ecology and Sociobiology.

[75]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[76]  Eamonn B. Mallon,et al.  Information flow, opinion polling and collective intelligence in house-hunting social insects. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[77]  Eric J. Warrant,et al.  Visual cues used by ball-rolling dung beetles for orientation , 2003, Journal of Comparative Physiology A.

[78]  S. Martin,et al.  A Review of Ant Cuticular Hydrocarbons , 2009, Journal of Chemical Ecology.

[79]  Xiaoya Ma,et al.  Complex brain and optic lobes in an early Cambrian arthropod , 2012, Nature.

[80]  JEAN-LOUIS DENEUBOURG,et al.  Positive Feedback, Convergent Collective Patterns, and Social Transitions in Arthropods , 2009, Organization of Insect Societies.

[81]  D. Sumpter,et al.  From nonlinearity to optimality: pheromone trail foraging by ants , 2003, Animal Behaviour.

[82]  Jacek Szwedo,et al.  Brood care in a 100-million-year-old scale insect , 2015, eLife.

[83]  C. Moreau,et al.  Phylogeny of the Ants: Diversification in the Age of Angiosperms , 2006, Science.

[84]  J. Deneubourg,et al.  Colony size, communication and ant foraging strategy , 1989 .

[85]  R. Matthews,et al.  Ants. , 1898, Science.

[86]  J. Deneubourg,et al.  Trails and U-turns in the Selection of a Path by the Ant Lasius niger , 1992 .

[87]  E. Bernays,et al.  Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators , 1991 .

[88]  I. Couzin Collective cognition in animal groups , 2009, Trends in Cognitive Sciences.

[89]  Nigel R. Franks,et al.  Ants estimate area using Buffon's needle , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[90]  D. Sumpter,et al.  Optimisation in a natural system: Argentine ants solve the Towers of Hanoi , 2011, Journal of Experimental Biology.

[91]  Amos Korman,et al.  Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology , 2012, DISC.

[92]  B. Hölldobler Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex , 1976, Behavioral Ecology and Sociobiology.

[93]  Daniel Polani,et al.  An Informational Study of the Evolution of Codes and of Emerging Concepts in Populations of Agents , 2015, Artificial Life.

[94]  B. Hölldobler Recruitment behavior in Camponotus socius (Hym. Formicidae) , 1971, Zeitschrift für vergleichende Physiologie.

[95]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[96]  J. Fewell Social Insect Networks , 2003, Science.

[97]  E. Bonabeau,et al.  Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[98]  Howard E. Evans,et al.  The Behavior Patterns of Solitary Wasps , 1966 .

[99]  James S. Waters,et al.  Allometric Scaling of Metabolism, Growth, and Activity in Whole Colonies of the Seed‐Harvester Ant Pogonomyrmex californicus , 2010, The American Naturalist.

[100]  Deborah M. Gordon,et al.  Encounter rate and task allocation in harvester ants , 1999, Behavioral Ecology and Sociobiology.

[101]  J. Deneubourg,et al.  Self-organized shortcuts in the Argentine ant , 1989, Naturwissenschaften.

[102]  J. Strassmann,et al.  KIN SELECTION AND SOCIAL INSECTS , 1998 .

[103]  N. Franks,et al.  Spatial relationships within nests of the ant Leptothorax unifasciatus (Latr.) and their implications for the division of labour , 1995, Animal Behaviour.

[104]  J. Deneubourg,et al.  Probabilistic behaviour in ants: A strategy of errors? , 1983 .

[105]  Deborah M. Gordon,et al.  The expandable network of ant exploration , 1995, Animal Behaviour.

[106]  L. Aiello,et al.  The Expensive-Tissue Hypothesis: The Brain and the Digestive System in Human and Primate Evolution , 1995, Current Anthropology.

[107]  T. Alloway Learning and Memory in Insects , 1972 .

[108]  S. Graham,et al.  Honey Bee Nest Thermoregulation: Diversity Promotes Stability , 2004, Science.

[109]  E. Wilson,et al.  Dense heterarchies and mass communication as the basis of organization in ant colonies. , 1988, Trends in ecology & evolution.

[110]  G. Robinson Regulation of division of labor in insect societies. , 1992, Annual review of entomology.

[111]  T. Seeley,et al.  Group decision making in honey bee swarms , 2006 .

[112]  Guy Theraulaz,et al.  The formation of spatial patterns in social insects: from simple behaviours to complex structures , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[113]  Adrian Kosowski,et al.  A locally-blazed ant trail achieves efficient collective navigation despite limited information , 2016, eLife.

[114]  Deborah M. Gordon,et al.  Interactions with Combined Chemical Cues Inform Harvester Ant Foragers' Decisions to Leave the Nest in Search of Food , 2013, PloS one.

[115]  Anna Dornhaus,et al.  Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies , 2011, PloS one.

[116]  D. Sumpter,et al.  From Compromise to Leadership in Pigeon Homing , 2006, Current Biology.

[117]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[118]  L. Giraldeau,et al.  Exploring the costs and benefits of social information use: an appraisal of current experimental evidence , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[119]  E. Wilson Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 1. The Organization of Mass-Foraging , 1962 .

[120]  T. O. Richardson,et al.  Ants in a Labyrinth: A Statistical Mechanics Approach to the Division of Labour , 2011, PloS one.

[121]  S. Farris,et al.  Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects , 2011, Proceedings of the Royal Society B: Biological Sciences.

[122]  D. Gordon,et al.  What is the function of encounter patterns in ant colonies? , 1993, Animal Behaviour.

[123]  E. Robinson,et al.  How collective comparisons emerge without individual comparisons of the options , 2014, Proceedings of the Royal Society B: Biological Sciences.

[124]  Deborah M. Gordon,et al.  The effect of individual variation on the structure and function of interaction networks in harvester ants , 2011, Journal of The Royal Society Interface.

[125]  Jean-Louis Deneubourg,et al.  Regulation of ants' foraging to resource productivity , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[126]  Tom De Wolf,et al.  Emergence Versus Self-Organisation: Different Concepts but Promising When Combined , 2004, Engineering Self-Organising Systems.

[127]  J. Nieh A Negative Feedback Signal That Is Triggered by Peril Curbs Honey Bee Recruitment , 2010, Current Biology.

[128]  D. Sumpter,et al.  Fast and accurate decisions through collective vigilance in fish shoals , 2011, Proceedings of the National Academy of Sciences.

[129]  Kevin M. O'Neill,et al.  Solitary Wasps: Behavior and Natural History , 2001 .

[130]  T. O. Richardson,et al.  Beyond contact-based transmission networks: the role of spatial coincidence , 2015, Journal of The Royal Society Interface.

[131]  J. Niven,et al.  Are Bigger Brains Better? , 2009, Current Biology.

[132]  Anna Dornhaus,et al.  Individual and collective cognition in ants and other insects ( Hymenoptera : Formicidae ) , 2008 .

[133]  Douglas Blackiston,et al.  Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae) , 2011, Journal of Experimental Biology.

[134]  E. Wilson Chemical communication among workers of the fire ant Solenopsis saevissima (Fr. Smith) 2. An information analysis of the odour trail , 1962 .

[135]  Audrey Dussutour,et al.  How to tell your mates—costs and benefits of different recruitment mechanisms , 2009 .

[136]  M. Kaspari,et al.  Energetic basis of colonial living in social insects , 2010, Proceedings of the National Academy of Sciences.

[137]  S. Pratt,et al.  Ant colonies outperform individuals when a sensory discrimination task is difficult but not when it is easy , 2013, Proceedings of the National Academy of Sciences.

[138]  Ofer Feinerman,et al.  Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants , 2015, Behavioral Ecology and Sociobiology.

[139]  J. Deneubourg,et al.  Trail laying behaviour during food recruitment in the antLasius niger (L.) , 1992, Insectes Sociaux.

[140]  C. L. Stong,et al.  The amateur scientist. , 1960, Scientific American.

[141]  Bernhard Haeupler,et al.  Breathe before speaking: efficient information dissemination despite noisy, limited and anonymous communication , 2013, Distributed Computing.

[142]  Correction for Ward et al., Fast and accurate decisions through collective vigilance in fish shoals , 2011, Proceedings of the National Academy of Sciences.

[143]  Jean-Pierre Eckmann,et al.  Desert ants achieve reliable recruitment across noisy interactions , 2013, Journal of The Royal Society Interface.

[144]  Ofer Feinerman,et al.  Social brains and behavior: past and present , 2016 .

[145]  Bernard J. Crespi,et al.  The definition of eusociality , 1995 .

[146]  K. Jaffe,et al.  Orientation cues used by ants , 1990, Insectes Sociaux.

[147]  Andrew M Simons,et al.  Many wrongs: the advantage of group navigation. , 2004, Trends in ecology & evolution.

[148]  A. Attygalle,et al.  Complex chemical communication in the crazy ant Paratrechina longicornis Latreille (Hymenoptera: Formicidae) , 2007, Chemoecology.