Cosine-modulated window function-based staggered-grid finite-difference forward modeling

The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finitedifference method.

[1]  Z. Alterman,et al.  Propagation of elastic waves in layered media by finite difference methods , 1968 .

[2]  K. R. Kelly,et al.  SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH , 1976 .

[3]  Jenö Gazdag,et al.  Modeling of the acoustic wave equation with transform methods , 1981 .

[4]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[5]  K. Marfurt Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations , 1984 .

[6]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[7]  M. A. Dablain,et al.  The application of high-order differencing to the scalar wave equation , 1986 .

[8]  B. Fornberg The pseudospectral method: Comparisons with finite differences for the elastic wave equation , 1987 .

[9]  Binzhong Zhou,et al.  Seismic scalar wave equation modeling by a convolutional differentiator , 1992 .

[10]  Géza Seriani,et al.  A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media , 1992 .

[11]  Heiner Igel,et al.  Anisotropic wave propagation through finite-difference grids , 1995 .

[12]  Eduardo A. B. da Silva,et al.  Digital Signal Processing: System Analysis and Design , 2002 .

[13]  Erik H. Saenger,et al.  Effective velocities in fractured media: a numerical study using the rotated staggered finite‐difference grid , 2002 .

[14]  Erik H. Saenger,et al.  Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid , 2004 .

[15]  Yang Liu,et al.  A new time-space domain high-order finite-difference method for the acoustic wave equation , 2009, J. Comput. Phys..

[16]  Mrinal K. Sen,et al.  Acoustic VTI modeling with a time-space domain dispersion-relation-based finite-difference scheme , 2010 .

[17]  Paul L. Stoffa,et al.  Determination of finite-difference weights using scaled binomial windows , 2012 .

[18]  Hossein Memarian,et al.  イラン,ガッチサラン蒸発形成層の無水石膏,泥灰土,塩の動的特性 , 2013 .

[19]  Visco‐acoustic prestack reverse‐time migration based on the time‐space domain adaptive high‐order finite‐difference method , 2013 .

[20]  Jianguo Zhao,et al.  Perfectly matched layer-absorbing boundary condition for finite-element time-domain modeling of elastic wave equations , 2013, Applied Geophysics.

[21]  Pre-stack reverse-time migration based on the time-space domain adaptive high-order finite-difference method in acoustic VTI medium , 2013 .

[22]  Robin M. Weiss,et al.  Solving 3D anisotropic elastic wave equations on parallel GPU devices , 2013 .

[23]  Lei Yang,et al.  Least squares staggered-grid finite-difference for elastic wave modelling , 2014 .