Algebraic nonlinear estimation and flatness-based lateral/longitudinal control for automotive vehicles

A combined longitudinal and lateral vehicle control is presented. It employs flatness-based control and new algebraic estimation techniques for the numerical differentiation of noisy signals. This nonlinear control is designed for automatic path-tracking via vehicle steering angle and driving/braking wheel torque. It combines the control of the lateral and longitudinal movements in order to ensure an accurate tracking of straight or curved trajectories. It can also be used to perform a combined lane-keeping and steering control during critical driving situations such as obstacle avoidance, stop-and-go control, lane-change maneuvers or any other maneuvers. Promising results have been obtained using the noisy experimental data acquired by a laboratory vehicle under high dynamic loads and characterized by high lateral accelerations.

[1]  Wolfgang Sienel,et al.  Robust Control for Automatic Steering , 1990, 1990 American Control Conference.

[2]  S. Fuchshumer,et al.  Nonlinear Vehicle Dynamics Control - A Flatness Based Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[3]  Jürgen Guldner,et al.  Robust automatic steering control for look-down reference systems with front and rear sensors , 1999, IEEE Trans. Control. Syst. Technol..

[4]  Brigitte d'Andréa-Novel,et al.  Analyse fréquentielle des dérivateurs algébriques , 2009 .

[5]  Keith Redmill,et al.  Automated lane change controller design , 2003, IEEE Trans. Intell. Transp. Syst..

[6]  Mario Milanese,et al.  Combined Automatic Lane-Keeping and Driver's Steering Through a 2-DOF Control Strategy , 2009, IEEE Transactions on Control Systems Technology.

[7]  L. Nouvelière,et al.  Commandes robustes appliquees au controle assiste d'un vehicule a basse vitesse , 2002 .

[8]  Manfred Plöchl,et al.  Driver models in automobile dynamics application , 2007 .

[9]  Brigitte d'Andréa-Novel,et al.  Robust stop-and-go control strategy: an algebraic approach for non-linear estimation and control , 2009 .

[10]  Sadayuki Tsugawa,et al.  Vision-based vehicles in Japan: machine vision systems and driving control systems , 1994, IEEE Trans. Ind. Electron..

[11]  O. Sename,et al.  Vehicle dynamic stability improvements through gain-scheduled steering and braking control , 2011 .

[12]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[13]  Cédric Join,et al.  Numerical differentiation with annihilators in noisy environment , 2009, Numerical Algorithms.

[14]  Carlos Canudas-de-Wit,et al.  A Safe Longitudinal Control for Adaptive Cruise Control and Stop-and-Go Scenarios , 2007, IEEE Transactions on Control Systems Technology.

[15]  Wei-Bin Zhang,et al.  Demonstration of integrated longitudinal and lateral control for the operation of automated vehicles in platoons , 2000, IEEE Trans. Control. Syst. Technol..

[16]  M. Fliess,et al.  Vers une caractérisation non linéaire d'un réseau autoroutier , 2011 .

[17]  B. d'Andrea-Novel,et al.  Tracking with stability for a vehicle braking in a corner , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[18]  Sunil K. Agrawal,et al.  Differentially Flat Systems , 2004 .

[19]  Fei-Yue Wang,et al.  An overview of recent developments in automated lateral and longitudinal vehicle controls , 2001, 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace (Cat.No.01CH37236).

[20]  Jean Levine,et al.  Analysis and Control of Nonlinear Systems , 2009 .

[21]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[22]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..

[23]  Brigitte d'Andréa-Novel,et al.  A diagnosis-based approach for tire-road forces and maximum friction estimation , 2011 .

[24]  H Chou,et al.  Global vehicle control using differential braking torques and active suspension forces , 2005 .

[25]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[26]  Charles Poussot-Vassal,et al.  Attitude and Handling Improvements Through Gain-scheduled Suspensions and Brakes Control , 2008 .

[27]  Yong Zhang,et al.  Controller design for vehicle stability enhancement , 2006 .

[28]  Riccardo Marino,et al.  Input–Output Decoupling Control by Measurement Feedback in Four-Wheel-Steering Vehicles , 2009, IEEE Transactions on Control Systems Technology.

[29]  Michel Fliess,et al.  Analyse non standard du bruit , 2006, ArXiv.

[30]  Ali Ghaffari,et al.  A historical review on lateral and longitudinal control of autonomous vehicle motions , 2010, 2010 International Conference on Mechanical and Electrical Technology.

[31]  Vadim I. Utkin,et al.  Linear and nonlinear controller design for robust automatic steering , 1995, IEEE Trans. Control. Syst. Technol..