CONTEST: A Controllable Test Matrix Toolbox for MATLAB

Large, sparse networks that describe complex interactions are a common feature across a number of disciplines, giving rise to many challenging matrix computational tasks. Several random graph models have been proposed that capture key properties of real-life networks. These models provide realistic, parametrized matrices for testing linear system and eigenvalue solvers. CONTEST (CONtrollable TEST matrices) is a random network toolbox for MATLAB that implements nine models. The models produce unweighted directed or undirected graphs; that is, symmetric or unsymmetric matrices with elements equal to zero or one. They have one or more parameters that affect features such as sparsity and characteristic pathlength and all can be of arbitrary dimension. Utility functions are supplied for rewiring, adding extra shortcuts and subsampling in order to create further classes of networks. Other utilities convert the adjacency matrices into real-valued coefficient matrices for naturally arising computational tasks that reduce to sparse linear system and eigenvalue problems.

[1]  D. Vere-Jones Markov Chains , 1972, Nature.

[2]  Jeffery R. Westbrook,et al.  A Functional Approach to External Graph Algorithms , 1998, ESA.

[3]  Natasa Przulj,et al.  Modelling protein–protein interaction networks via a stickiness index , 2006, Journal of The Royal Society Interface.

[4]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[5]  Desmond J. Higham,et al.  Unravelling small world networks , 2003 .

[6]  Desmond J. Higham,et al.  Fitting a geometric graph to a protein-protein interaction network , 2008, Bioinform..

[7]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[8]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[9]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[10]  Jianbo Shi,et al.  Spectral segmentation with multiscale graph decomposition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Richard F. Barrett,et al.  Matrix Market: a web resource for test matrix collections , 1996, Quality of Numerical Software.

[12]  Neo D. Martinez,et al.  Two degrees of separation in complex food webs , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[14]  D. Higham,et al.  Periodic Reordering , 2008 .

[15]  Béla Bollobás,et al.  Random Graphs , 1985 .

[16]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[17]  M. Vidal,et al.  Effect of sampling on topology predictions of protein-protein interaction networks , 2005, Nature Biotechnology.

[18]  I. Kiss,et al.  The network of sheep movements within Great Britain: network properties and their implications for infectious disease spread , 2006, Journal of The Royal Society Interface.

[19]  Klaas E. Stephan,et al.  An Introduction to CoCoMac-Online , 2003 .

[20]  P. Grindrod Range-dependent random graphs and their application to modeling large small-world Proteome datasets. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Carsten Wiuf,et al.  Subnets of scale-free networks are not scale-free: sampling properties of networks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.

[23]  Béla Bollobás,et al.  The degree sequence of a scale‐free random graph process , 2001, Random Struct. Algorithms.

[24]  P. Uetz,et al.  What do we learn from high-throughput protein interaction data? , 2004, Expert review of proteomics.

[25]  M. Newman,et al.  Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Iain S. Duff,et al.  Sparse matrix test problems , 1982 .

[27]  H. Poincaré,et al.  Percolation ? , 1982 .

[28]  Uri Alon,et al.  An Introduction to Systems Biology , 2006 .

[29]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[30]  Nicholas J. Higham,et al.  Matlab guide , 2000 .

[31]  Desmond J. Higham,et al.  A lock-and-key model for protein-protein interactions , 2006, Bioinform..

[32]  Marcel Salathé,et al.  The evolution of network topology by selective removal , 2005, Journal of The Royal Society Interface.

[33]  Raya Khanin,et al.  How Scale-Free Are Biological Networks , 2006, J. Comput. Biol..

[34]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[35]  John R. Gilbert,et al.  Sparse Matrices in MATLAB: Design and Implementation , 1992, SIAM J. Matrix Anal. Appl..

[36]  Jack Dongarra,et al.  LAPACK Users' guide (third ed.) , 1999 .

[37]  Igor Jurisica,et al.  Efficient estimation of graphlet frequency distributions in protein-protein interaction networks , 2006, Bioinform..

[38]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[39]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[40]  B. Hendrickson The Chaco User � s Guide Version , 2005 .

[41]  G. Fagiolo Clustering in complex directed networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[43]  C. Cannings,et al.  On the structure of protein-protein interaction networks. , 2003, Biochemical Society transactions.

[44]  D. Higham Spectral Reordering of a Range-Dependent Weighted Random Graph , 2005 .

[45]  Ulrik Brandes,et al.  Efficient generation of large random networks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  Desmond J. Higham,et al.  GeneRank: Using search engine technology for the analysis of microarray experiments , 2005, BMC Bioinformatics.

[47]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[48]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[49]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Newman 1 Who is the best connected scientist ? A study of scientific coauthorship networks , 2004 .

[51]  Mark R. Muldoon,et al.  The Small World of Corporate Boards , 2006 .

[52]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[53]  Tijana Milenkovic,et al.  GraphCrunch: A tool for large network analyses , 2008, BMC Bioinformatics.

[54]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[55]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[56]  L. Asz Random Walks on Graphs: a Survey , 2022 .

[57]  Peter Donnelly,et al.  Superfamilies of Evolved and Designed Networks , 2004 .

[58]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[59]  R. N. Onody,et al.  Complex network study of Brazilian soccer players. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  M. Newman,et al.  Mean-field solution of the small-world network model. , 1999, Physical review letters.

[61]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[62]  Michael P H Stumpf,et al.  Complex networks and simple models in biology , 2005, Journal of The Royal Society Interface.

[63]  Mason A. Porter,et al.  A network analysis of committees in the United States House of Representatives , 2005, ArXiv.

[64]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[65]  Carsten Wiuf,et al.  The effects of incomplete protein interaction data on structural and evolutionary inferences , 2006, BMC Biology.