Non-thermalization in trapped atomic ion spin chains

Linear arrays of trapped and laser-cooled atomic ions are a versatile platform for studying strongly interacting many-body quantum systems. Effective spins are encoded in long-lived electronic levels of each ion and made to interact through laser-mediated optical dipole forces. The advantages of experiments with cold trapped ions, including high spatio-temporal resolution, decoupling from the external environment and control over the system Hamiltonian, are used to measure quantum effects not always accessible in natural condensed matter samples. In this review, we highlight recent work using trapped ions to explore a variety of non-ergodic phenomena in long-range interacting spin models, effects that are heralded by the memory of out-of-equilibrium initial conditions. We observe long-lived memory in static magnetizations for quenched many-body localization and prethermalization, while memory is preserved in the periodic oscillations of a driven discrete time crystal state. This article is part of the themed issue ‘Breakdown of ergodicity in quantum systems: from solids to synthetic matter’.

[1]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[2]  Aaron C. E. Lee,et al.  Many-body localization in a quantum simulator with programmable random disorder , 2015, Nature Physics.

[3]  J. Freericks,et al.  Creation of two-dimensional Coulomb crystals of ions in oblate Paul traps for quantum simulations , 2014, 1406.5545.

[4]  Roderich Moessner,et al.  Equilibrium states of generic quantum systems subject to periodic driving. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  J. Smith,et al.  Coherent imaging spectroscopy of a quantum many-body spin system , 2014, Science.

[6]  Quantum Networks with Atoms and Photons , 2013 .

[7]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[8]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[9]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[10]  J Mizrahi,et al.  Entanglement of atomic qubits using an optical frequency comb. , 2010, Physical review letters.

[11]  Two-dimensional ion crystals in radio-frequency traps for quantum simulation , 2016, 1604.08523.

[12]  M. Rigol,et al.  From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics , 2015, 1509.06411.

[13]  J. Larson Integrability vs Quantum Thermalization , 2019 .

[14]  A. Retzker,et al.  Realization of a Quantum Integer-Spin Chain with Controllable Interactions , 2014, 1410.0937.

[15]  Simulating the Haldane phase in trapped-ion spins using optical fields , 2015, 1505.04695.

[16]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[17]  W. Xu,et al.  Disorder-induced localization in a strongly correlated atomic Hubbard gas. , 2013, Physical review letters.

[18]  Masaki Oshikawa,et al.  Absence of Quantum Time Crystals. , 2014, Physical review letters.

[19]  D. Basko,et al.  Metal–insulator transition in a weakly interacting many-electron system with localized single-particle states , 2005, cond-mat/0506617.

[20]  M. Rigol,et al.  Long-time behavior of periodically driven isolated interacting lattice systems , 2014, 1402.5141.

[21]  Deutsch,et al.  Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  F. Haldane Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically Quantized Solitons of the One-Dimensional Easy-Axis Néel State , 1983 .

[23]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[24]  Wojciech De Roeck,et al.  Stability and instability towards delocalization in many-body localization systems , 2016, 1608.01815.

[25]  Massimo Inguscio,et al.  Anderson localization of a non-interacting Bose–Einstein condensate , 2008, Nature.

[26]  Srednicki Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[27]  M. Schreiber,et al.  Coupling Identical one-dimensional Many-Body Localized Systems. , 2015, Physical review letters.

[28]  P. W. Hess,et al.  Observation of a discrete time crystal , 2016, Nature.

[29]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[30]  R. Streater,et al.  NO-GO THEOREM. , 1968 .

[31]  Roderich Moessner,et al.  Phase Structure of Driven Quantum Systems. , 2015, Physical review letters.

[32]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[33]  Electronic structure of Pu and Am metals by self-consistent relativistic GWmethod , 2011, 1112.0214.

[34]  D. Basko,et al.  Possible experimental manifestations of the many-body localization , 2007, 0704.1479.

[35]  L. Eriksson,et al.  Basic principles and applications , 2013 .

[36]  M. Chang,et al.  Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. , 2009, Physical review letters.

[37]  F. Gebert,et al.  A novel, robust quantum detection scheme , 2011, 1109.4981.

[38]  Aaron C. E. Lee,et al.  Observation of prethermalization in long-range interacting spin chains , 2016, Science Advances.

[39]  Peter Reimann,et al.  Quantum versus classical foundation of statistical mechanics under experimentally realistic conditions. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Matthew Rispoli,et al.  Quantum thermalization through entanglement in an isolated many-body system , 2016, Science.

[41]  I. V. Inlek,et al.  Beat note stabilization of mode-locked lasers for quantum information processing. , 2013, Optics letters.

[42]  Michael Drewsen,et al.  Trapped-ion quantum logic utilizing position-dependent ac Stark shifts , 2002 .

[43]  Strongly correlated fermions after a quantum quench. , 2006, Physical review letters.

[44]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[45]  A. Aspect,et al.  Direct observation of Anderson localization of matter waves in a controlled disorder , 2008, Nature.

[46]  M. Schreiber,et al.  Signatures of Many-Body Localization in a Controlled Open Quantum System , 2016, 1610.01613.

[47]  A. Kamenev,et al.  Keldysh technique and non-linear σ-model: basic principles and applications , 2009, 0901.3586.

[48]  A. Burin M ar 2 01 5 Many-body localization in a random x − y model with the long-range interaction , 2015 .

[49]  Bela Bauer,et al.  Floquet Time Crystals. , 2016, Physical review letters.

[50]  S. Skipetrov,et al.  Localization of ultrasound in a three-dimensional elastic network , 2008, 0805.1502.

[51]  D. Huse,et al.  Many-body localization in a quasiperiodic system , 2012, 1212.4159.

[52]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[53]  Marcos Rigol,et al.  Relaxation in a completely integrable many-body quantum system: an ab initio study of the dynamics of the highly excited states of 1D lattice hard-core bosons. , 2007, Physical review letters.

[54]  D. Grempel,et al.  Chaos, Quantum Recurrences, and Anderson Localization , 1982 .

[55]  N. Yao,et al.  Discrete Time Crystals: Rigidity, Criticality, and Realizations. , 2016, Physical review letters.

[56]  A Retzker,et al.  Proposal for verification of the haldane phase using trapped ions. , 2014, Physical review letters.

[57]  R. Feynman Statistical Mechanics, A Set of Lectures , 1972 .

[58]  C. Monroe,et al.  Ultrafast spin-motion entanglement and interferometry with a single atom. , 2012, Physical review letters.

[59]  M. Lewenstein,et al.  Quantum chaos in SU(3) models with trapped ions. , 2013, Physical review letters.

[60]  J Mizrahi,et al.  Ultrafast gates for single atomic qubits. , 2010, Physical review letters.

[61]  F. Alet,et al.  Many-body localization edge in the random-field Heisenberg chain , 2014, 1411.0660.

[62]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[63]  L. Duan,et al.  Prethermalization and dynamic phase transition in an isolated trapped ion spin chain , 2013, 1305.0985.

[64]  Shi-Liang Zhu,et al.  Trapped ion quantum computation with transverse phonon modes. , 2006, Physical review letters.

[65]  D M Lucas,et al.  High-fidelity readout of trapped-ion qubits. , 2008, Physical review letters.

[66]  B. Lanyon,et al.  Spectroscopy of Interacting Quasiparticles in Trapped Ions. , 2015, Physical review letters.

[67]  K. Sacha Modeling spontaneous breaking of time-translation symmetry , 2014, 1410.3638.

[68]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[69]  M. Heyl,et al.  Many-body localization and quantum ergodicity in disordered long-range Ising models , 2014, 1410.1491.

[70]  Alessandro Silva,et al.  Colloquium: Nonequilibrium dynamics of closed interacting quantum systems , 2010, 1007.5331.

[71]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[72]  M. Rigol,et al.  Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems , 2010 .

[73]  T. Morimoto,et al.  Classification of Interacting Topological Floquet Phases in One Dimension , 2016, 1602.05194.

[74]  S. Sarma,et al.  Understanding analog quantum simulation dynamics in coupled ion-trap qubits , 2015, 1512.00848.

[75]  A. Chandran,et al.  Periodically driven ergodic and many-body localized quantum systems , 2014, 1403.6480.

[76]  M. Schreiber,et al.  Observation of many-body localization of interacting fermions in a quasirandom optical lattice , 2015, Science.

[77]  O. Seeberg Statistical Mechanics. — A Set of Lectures , 1975 .

[78]  Daniel Nigg,et al.  A quantum information processor with trapped ions , 2013, 1308.3096.

[79]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[80]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[81]  Alexey V. Gorshkov,et al.  Non-local propagation of correlations in quantum systems with long-range interactions , 2014, Nature.

[82]  Frank Wilczek,et al.  Superfluidity and space-time translation symmetry breaking. , 2013, Physical review letters.

[83]  Paul W. Hess,et al.  Engineering large Stark shifts for control of individual clock state qubits , 2016, 1604.08840.

[84]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[85]  P. M. Platzman,et al.  Microwave localization by two-dimensional random scattering , 1991, Nature.

[86]  C. Monroe,et al.  Quantum simulation of spin models on an arbitrary lattice with trapped ions , 2012, 1201.0776.

[87]  P. Bruno,et al.  Impossibility of spontaneously rotating time crystals: a no-go theorem. , 2013, Physical review letters.

[88]  A. Gambassi,et al.  Prethermalization in a nonintegrable quantum spin chain after a quench. , 2013, Physical review letters.

[89]  J. Larson Integrability versus quantum thermalization , 2013, 1304.3585.

[90]  Hengyun Zhou,et al.  Observation of discrete time-crystalline order in a disordered dipolar many-body system , 2016, Nature.

[91]  M. Segev,et al.  Transport and Anderson localization in disordered two-dimensional photonic lattices , 2007, Nature.

[92]  B. Demarco,et al.  Three-Dimensional Anderson Localization of Ultracold Matter , 2011, Science.

[93]  Peter Maunz,et al.  High speed, high fidelity detection of an atomic hyperfine qubit. , 2013, Optics letters.

[94]  Fred Garnett,et al.  Colloquium , 2008, Br. J. Educ. Technol..

[95]  P. Nozières Time crystals: Can diamagnetic currents drive a charge density wave into rotation? , 2013, 1306.6229.

[96]  R. Nandkishore,et al.  Many-Body Localization and Thermalization in Quantum Statistical Mechanics , 2014, 1404.0686.

[97]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[98]  D. Huse,et al.  Localization of interacting fermions at high temperature , 2006, cond-mat/0610854.

[99]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[100]  F. G. Major,et al.  Physics and techniques of charged particle field confinement , 2005 .