Diffusion coefficient for a Brownian particle in a periodic field of force
暂无分享,去创建一个
[1] G. Vineyard. Frequency factors and isotope effects in solid state rate processes , 1957 .
[2] G. Wilemski. On the derivation of Smoluchowski equations with corrections in the classical theory of Brownian motion , 1976 .
[3] S. Chandrasekhar. Stochastic problems in Physics and Astronomy , 1943 .
[4] H. Kramers. Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .
[5] S. Rice,et al. Dynamical Theory of Diffusion in Crystals , 1958 .
[6] G. Vineyard,et al. SCATTERING OF SLOW NEUTRONS BY A LIQUID , 1958 .
[7] R. J. Elliott,et al. Neutron Scattering from a Liquid on a Jump Diffusion Model , 1961 .
[8] 好村 滋洋. G. Hohler 編: Springer Tracts in Modern Physics, Vol. 64; Tasso Springer: Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer-Verlag, Berlin and Heidelberg, New York, 1972, 100ページ, 24×16cm, 4,370円 , 1973 .
[9] H. Glyde. Rate Processes in Solids , 1967 .
[10] C. P. Flynn,et al. Point Defects and Diffusion , 1973 .
[11] Tien T. Tsong,et al. Direct observation of the directional walk of single adatoms and the adatom polarizability , 1975 .
[12] L. Sehgal. Model of the decay k(2) --> pi0 gamma gamma and a unitarity constraint on the decay rate , 1972 .
[13] H. Suhl,et al. Brownian motion model of the interactions between chemical species and metallic electrons: Bootstrap derivation and parameter evaluation , 1975 .