Galaxy halo occupation at high redshift

We discuss how current and future data on the clustering and number density of Lyman-break galaxies (LBGs) can be used to constrain their relationship to dark matter haloes. We explore a three-parameter model in which the number of LBGs per dark halo scales like a power law in the halo mass: for . Here, Mmin is the minimum mass halo that can host an LBG, M1 is a normalization parameter, associated with the mass above which haloes host more than one observed LBG, and S determines the strength of the mass-dependence. We show how these three parameters are constrained by three observable properties of LBGs: the number density, the large-scale bias and the fraction of objects in close pairs. Given these three quantities, the three unknown model parameters may be estimated analytically, allowing a full exploration of parameter space. As an example, we assume a ΛCDM cosmology and consider the observed properties of a recent sample of spectroscopically confirmed LBGs. We find that the favoured range for our model parameters is , , and . The preferred region in Mmin expands by an order of magnitude, and slightly shallower slopes are acceptable if the allowed range of bg is permitted to span all recent observational estimates. We also discuss how the observed clustering of LBGs as a function of luminosity can be used to constrain halo occupation, although because of current observational uncertainties we are unable to reach any strong conclusions. Our methods and results can be used to constrain more realistic models that aim to derive the occupation function N(M) from first principles, and offer insight into how basic physical properties affect the observed properties of LBGs.

[1]  J. Cuby,et al.  The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics , 2001, astro-ph/0102456.

[2]  Garching,et al.  The host haloes of Lyman-break galaxies and submillimetre sources , 2001, astro-ph/0102436.

[3]  M. Sikora,et al.  Modeling the Production of Flares in Gamma-Ray Quasars , 2001, astro-ph/0102091.

[4]  A. Benson Measuring the distribution of galaxies between haloes , 2001, astro-ph/0101278.

[5]  Mark Dickinson,et al.  Clustering Segregation with Ultraviolet Luminosity in Lyman Break Galaxies at z~3 and Its Implications , 2000, astro-ph/0012249.

[6]  R. Wechsler,et al.  Galaxy Formation at z ~ 3: Constraints from Spatial Clustering , 2000, astro-ph/0011261.

[7]  Garching,et al.  Non-linear stochastic galaxy biasing in cosmological simulations , 1999, astro-ph/9912073.

[8]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[9]  B. Jain,et al.  How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering , 2000, astro-ph/0006319.

[10]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[11]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[12]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[13]  Denmark,et al.  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[14]  K. Adelberger Star Formation and Structure Formation at 1 <~ z <~ 4 , 2000 .

[15]  H. Spinrad,et al.  First Results from the Large-Area Lyman Alpha Survey , 1999, astro-ph/0003465.

[16]  R. Wechsler,et al.  Clustering of high-redshift galaxies: relating LBGs to dark matter halos , 1999, astro-ph/9910359.

[17]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[18]  S. Faber,et al.  Young Galaxies: What Turns Them On? , 1999, astro-ph/9906104.

[19]  R. Somerville,et al.  Lyman Break Galaxies as collision-driven starbursts , 1999 .

[20]  L. Moscardini,et al.  Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North , 1999, astro-ph/9902290.

[21]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[22]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[23]  Avishai Dekel,et al.  Stochastic Nonlinear Galaxy Biasing , 1998, astro-ph/9806193.

[24]  Stefan Gottloeber,et al.  Galaxies in N-Body Simulations: Overcoming the Overmerging Problem , 1997, astro-ph/9708191.

[25]  R. Wechsler,et al.  The nature of high-redshift galaxies , 1998, astro-ph/0006364.

[26]  J. Bagla Clustering of galaxies at high redshifts , 1998 .

[27]  M. Giavalisco,et al.  A Counts-in-Cells Analysis Of Lyman-break Galaxies At Redshift z ~ 3 , 1998, astro-ph/9804236.

[28]  L. Moscardini,et al.  The clustering of Lyman-break galaxies , 1998, Monthly Notices of the Royal Astronomical Society.

[29]  M. Dickinson,et al.  The Angular Clustering of Lyman-Break Galaxies at Redshift z ~ 3 , 1998, astro-ph/9802318.

[30]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.

[31]  L. Moscardini,et al.  Modelling galaxy clustering at high redshift , 1997, astro-ph/9712184.

[32]  R. Wechsler,et al.  Implications of Spikes in the Redshift Distribution of z ~ 3 Galaxies , 1998 .

[33]  Y. Jing,et al.  Confronting Cold Dark Matter Cosmologies with Strong Clustering of Lyman Break Galaxies at z ~ 3 , 1997, astro-ph/9710090.

[34]  M. Giavalisco,et al.  A Large Structure of Galaxies at Redshift z ~ 3 and Its Cosmological Implications , 1997, astro-ph/9708125.

[35]  Y. Jing,et al.  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[36]  M. Ross,et al.  Implications of Spikes in the Redshift Distribution of Z ∼ 3 Galaxies , 1997 .

[37]  J. Bagla Clustering in Redshift Space at High Redshifts , 1997 .

[38]  M. Fukugita,et al.  Constraints on the Cosmic Structure Formation Models from Early Formation of Giant Galaxies , 1996, astro-ph/9604034.