$W$ -Band (92–100 GHz) Phased-Array Receive Channel With Quadrature-Hybrid-Based Vector Modulator

This paper presents a <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-band (92–100 GHz) phased array receive channel adopting a power domain vector modulator (VM), which utilizes a 90° hybrid-coupler-based phase interpolator. The quadrature hybrid leverages its inherent functions of quadrature phase splitting and power combining to interpolate phases by combining the weighted signals from variable gain amplifiers in the power domain. Compared with prior active VMs, in the proposed VM, the phases are synthesized in a pure passive network with a matched impedance, less vulnerable to circuit nonlinearity. The distributed 90°-hybrid coupler offers a wideband operation of quadrature phasing and phase interpolation, resulting in a low phase error over the <inline-formula> <tex-math notation="LaTeX">$W$ </tex-math></inline-formula>-band. The measured VM peak-to-peak gain variation for all 5-bit phase states is 7.7–11 dB at the expense of 31-mW dc power from 2.2-V supply voltage. The measured rms gain error is <1.6 dB over 93–108 GHz and the rms phase error is <1.5° at 94 GHz. The output <inline-formula> <tex-math notation="LaTeX">$P_{-1\,{\mathrm{ dB}}}$ </tex-math></inline-formula> is −4 dBm at 94 GHz at the highest gain state. In the receive channel employing the 90°-hybrid-based VM, the peak-to-peak gain variation is 23–26 dB with 9.3–11-dB NF at the expense of 50-mW dc power from 2.2-V supply voltage. The measured input <inline-formula> <tex-math notation="LaTeX">$P_{-1\,{\mathrm{ dB}}}$ </tex-math></inline-formula> is −26 dBm. The chip size of the receive channel, implemented in 0.13-<inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> SiGe BiCMOS process, is <inline-formula> <tex-math notation="LaTeX">$1.65\times0.55$ </tex-math></inline-formula> mm<inline-formula> <tex-math notation="LaTeX">$^{\vphantom {R^{l}}2}$ </tex-math></inline-formula>.

[1]  Ali M. Niknejad,et al.  A 65 nm CMOS 4-Element Sub-34 mW/Element 60 GHz Phased-Array Transceiver , 2011, IEEE Journal of Solid-State Circuits.

[2]  Harish Krishnaswamy,et al.  A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[3]  Noriaki Kaneda,et al.  A 70–100 GHz Direct-Conversion Transmitter and Receiver Phased Array Chipset Demonstrating 10 Gb/s Wireless Link , 2013, IEEE Journal of Solid-State Circuits.

[4]  H. Bruce Wallace An application of advanced SiGe to millimeter-wave phased arrays , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[5]  Lawrence E. Larson,et al.  An Improved Broadband High Linearity SiGe HBT Differential Amplifier , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[6]  B. Gaucher,et al.  A Silicon 60-GHz Receiver and Transmitter Chipset for Broadband Communications , 2006, IEEE Journal of Solid-State Circuits.

[7]  Shmuel Ravid,et al.  A Bidirectional TX/RX Four-Element Phased Array at 60 GHz With RF-IF Conversion Block in 90-nm CMOS Process , 2010, IEEE Transactions on Microwave Theory and Techniques.

[8]  J. Laskar,et al.  The analysis of UWB SiGe HBT LNA for its noise, linearity, and minimum group delay variation , 2006, IEEE Transactions on Microwave Theory and Techniques.

[9]  Gabriel M. Rebeiz,et al.  A 90–100 Ghz 4×4 sige BiCMOS polarimetric transmit-receive phased array with simultaneous receive-beams capabilities , 2013, 2013 IEEE International Symposium on Phased Array Systems and Technology.

[10]  Yong-Zhong Xiong,et al.  A Ka-Band Single-Chip SiGe BiCMOS Phased-Array Transmit/Receive Front-End , 2016, IEEE Transactions on Microwave Theory and Techniques.

[11]  Kenji Itoh,et al.  A dual bias-feed circuit design for SiGe HBT low-noise linear amplifier , 2003 .

[12]  Gabriel M. Rebeiz,et al.  A Low-Power BiCMOS 4-Element Phased Array Receiver for 76–84 GHz Radars and Communication Systems , 2012, IEEE Journal of Solid-State Circuits.

[13]  Gabriel M. Rebeiz,et al.  60-GHz 64- and 256-Elements Wafer-Scale Phased-Array Transmitters Using Full-Reticle and Subreticle Stitching Techniques , 2016, IEEE Transactions on Microwave Theory and Techniques.

[14]  Samuel J. Parisi 1800 LUMPED ELEMENT HYBRID , 1989 .

[15]  Ruey-Beei Wu,et al.  60-GHz Four-Element Phased-Array Transmit/Receive System-in-Package Using Phase Compensation Techniques in 65-nm Flip-Chip CMOS Process , 2012, IEEE Transactions on Microwave Theory and Techniques.

[16]  A. A. Abidi,et al.  General relations between IP2, IP3, and offsets in differential circuits and the effects of feedback , 2003 .

[17]  Kwang-Jin Koh,et al.  90° hybrid-coupler based phase-interpolation phase-shifter for phased-array applications at W-band and beyond , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[18]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[19]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[20]  Gabriel M. Rebeiz,et al.  An Improved Wideband All-Pass I/Q Network for Millimeter-Wave Phase Shifters , 2012, IEEE Transactions on Microwave Theory and Techniques.

[21]  Ali M. Niknejad,et al.  A 94-GHz 4TX–4RX Phased-Array FMCW Radar Transceiver With Antenna-in-Package , 2017, IEEE Journal of Solid-State Circuits.

[22]  M. Marcus,et al.  Millimeter wave propagation: spectrum management implications , 2005, IEEE Microwave Magazine.

[23]  Duixian Liu,et al.  A Fully Integrated 16-Element Phased-Array Transmitter in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[24]  A. Natarajan,et al.  $W$-Band Dual-Polarization Phased-Array Transceiver Front-End in SiGe BiCMOS , 2015, IEEE Transactions on Microwave Theory and Techniques.

[25]  Gabriel M. Rebeiz,et al.  A 77–81-GHz 16-Element Phased-Array Receiver With $\pm {\hbox{50}}^{\circ}$ Beam Scanning for Advanced Automotive Radars , 2014, IEEE Transactions on Microwave Theory and Techniques.

[26]  Duixian Liu,et al.  A Fully-Integrated 16-Element Phased-Array Receiver in SiGe BiCMOS for 60-GHz Communications , 2010, IEEE Journal of Solid-State Circuits.

[27]  Gabriel M. Rebeiz,et al.  A 108–114 GHz 4 $\,\times\,$4 Wafer-Scale Phased Array Transmitter With High-Efficiency On-Chip Antennas , 2013, IEEE Journal of Solid-State Circuits.

[28]  Gabriel M. Rebeiz,et al.  A 76–84-GHz 16-Element Phased-Array Receiver With a Chip-Level Built-In Self-Test System , 2013, IEEE Transactions on Microwave Theory and Techniques.

[29]  Gabriel M. Rebeiz,et al.  A 44–46-GHz 16-Element SiGe BiCMOS High-Linearity Transmit/Receive Phased Array , 2012, IEEE Transactions on Microwave Theory and Techniques.

[30]  Arthur H. M. van Roermund,et al.  A 60 GHz Phase Shifter Integrated With LNA and PA in 65 nm CMOS for Phased Array Systems , 2010, IEEE Journal of Solid-State Circuits.

[31]  M. R. Islam,et al.  A compact 4-chip package with 64 embedded dual-polarization antennas for W-band phased-array transceivers , 2014, 2014 IEEE 64th Electronic Components and Technology Conference (ECTC).

[32]  Danny Elad,et al.  A 57–66 GHz reflection-type phase shifter with near-constant insertion loss , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[33]  Gabriel M. Rebeiz,et al.  A High-Linearity 76–85-GHz 16-Element 8-Transmit/8-Receive Phased-Array Chip With High Isolation and Flip-Chip Packaging , 2014, IEEE Transactions on Microwave Theory and Techniques.