Computational Vibroacoustics in Low- and Medium- Frequency Bands: Damping, ROM, and UQ Modeling

Within the framework of the state-of-the-art, this paper presents a summary of some common research works carried out by the authors concerning computational methods for the prediction of the responses in the frequency domain of general linear dissipative vibroacoustics (structural-acoustic) systems for liquid and gas in the low-frequency (LF) and medium-frequency (MF) domains, including uncertainty quantification (UQ) that plays an important role in the MF domain. The system under consideration consists of a deformable dissipative structure, coupled with an internal dissipative acoustic fluid including a wall acoustic impedance, and surrounded by an infinite acoustic fluid. The system is submitted to given internal and external acoustic sources and to prescribed mechanical forces. An efficient reduced-order computational model (ROM) is constructed using a finite element discretization (FEM) for the structure and the internal acoustic fluid. The external acoustic fluid is treated using a symmetric boundary element method (BEM) in the frequency domain. All the required modeling aspects required for the analysis in the MF domain have been introduced, in particular the frequency-dependent damping phenomena and model uncertainties. An industrial application to a complex computational vibroacoustic model of an automobile is presented.

[1]  J. Peraire,et al.  An efficient reduced‐order modeling approach for non‐linear parametrized partial differential equations , 2008 .

[2]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[3]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[4]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[5]  Charbel Farhat,et al.  A nonparametric probabilistic approach for quantifying uncertainties in low‐dimensional and high‐dimensional nonlinear models , 2017 .

[6]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[7]  E. S. Palencia,et al.  Vibration and Coupling of Continuous Systems , 1989 .

[8]  Bernard D. Coleman,et al.  On thermodynamics, strain impulses, and viscoelasticity , 1964 .

[9]  Brian R. Mace,et al.  Uncertainty in structural dynamics , 2005 .

[10]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[12]  S. Marburg,et al.  Structural–acoustic sensitivity analysis of radiated sound power using a finite element/ discontinuous fast multipole boundary element scheme , 2016 .

[13]  Peter J. Torvik,et al.  Fractional calculus-a di erent approach to the analysis of viscoelastically damped structures , 1983 .

[14]  R. Ghanem,et al.  Probabilistic equivalence and stochastic model reduction in multiscale analysis , 2008 .

[15]  Olaf Steinbach,et al.  Boundary Element Analysis , 2007 .

[16]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[17]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[18]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[19]  David Amsallem,et al.  An adaptive and efficient greedy procedure for the optimal training of parametric reduced‐order models , 2015 .

[20]  Christian Soize,et al.  Experimental validation of a nonparametric probabilistic model of nonhomogeneous uncertainties for dynamical systems. , 2004, The Journal of the Acoustical Society of America.

[21]  James Lighthill,et al.  Waves In Fluids , 1966 .

[22]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[23]  Jan Drewes Achenbach,et al.  Acoustic and Electromagnetic Waves , 1986 .

[24]  K. Willcox,et al.  Interpolation among reduced‐order matrices to obtain parameterized models for design, optimization and probabilistic analysis , 2009 .

[25]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[26]  Lothar Gaul,et al.  Boundary element methods for engineers and scientists , 2003 .

[27]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[28]  Charbel Farhat,et al.  A domain decomposition method for discontinuous Galerkin discretizations of Helmholtz problems with plane waves and Lagrange multipliers , 2009 .

[29]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[30]  Christian Soize,et al.  Fuzzy structure theory modeling of sound-insulation layers in complex vibroacoustic uncertain systems: theory and experimental validation. , 2009, The Journal of the Acoustical Society of America.

[31]  George A. Lesieutre,et al.  Damping in Structural Dynamics , 2010 .

[32]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[33]  Charbel Farhat,et al.  The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber , 2014 .

[34]  Christian Soize,et al.  Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification , 2014 .

[35]  I. Mathews,et al.  Numerical techniques for three‐dimensional steady‐state fluid–structure interaction , 1986 .

[36]  Carlos Alberto Brebbia,et al.  Boundary Elements: An Introductory Course , 1989 .

[37]  Christian Soize,et al.  Probabilistic model identification of uncertainties in computational models for dynamical systems and experimental validation , 2008 .

[38]  H. A. Schenck Improved Integral Formulation for Acoustic Radiation Problems , 1968 .

[39]  George A. Lesieutre,et al.  Finite element modeling of frequency-dependent material damping using augmenting thermodynamic fields , 1990 .

[40]  R. Kronig On the Theory of Dispersion of X-Rays , 1926 .

[41]  W. S. Venturini Boundary Integral Equations , 1983 .

[42]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[43]  C. Farhat,et al.  A low‐cost, goal‐oriented ‘compact proper orthogonal decomposition’ basis for model reduction of static systems , 2011 .

[44]  Thomas J. R. Hughes,et al.  Recent developments in finite element methods for structural acoustics , 1996 .

[45]  W. Hackbusch Integral Equations: Theory and Numerical Treatment , 1995 .

[46]  Jianxin Zhou,et al.  Boundary element methods , 1992, Computational mathematics and applications.

[47]  Christian Soize,et al.  Transient dynamics in structures with non-homogeneous uncertainties induced by complex joints , 2006 .

[48]  Daniel Rixen,et al.  Evaluation of Substructure Reduction Techniques with Fixed and Free Interfaces , 2016 .

[49]  P. Harris,et al.  A comparison between various boundary integral formulations of the exterior acoustic problem , 1990 .

[50]  F. G. Leppington,et al.  Modern Methods in Analytical Acoustics , 1992 .

[51]  C. Farhat,et al.  Design optimization using hyper-reduced-order models , 2015 .

[52]  O. C. Zienkiewicz,et al.  The Finite Element Method for Solid and Structural Mechanics , 2013 .

[53]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[54]  Michael Feldman,et al.  Hilbert Transform Applications in Mechanical Vibration: Feldman/Hilbert Transform Applications in Mechanical Vibration , 2011 .

[55]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[56]  R. Ohayon,et al.  Fluid-Structure Interaction: Applied Numerical Methods , 1995 .

[57]  James C. Spall,et al.  Introduction to stochastic search and optimization - estimation, simulation, and control , 2003, Wiley-Interscience series in discrete mathematics and optimization.

[58]  C. Farhat,et al.  Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy‐based mesh sampling and weighting for computational efficiency , 2014 .

[59]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[60]  S. Marburg,et al.  Modal decomposition of exterior acoustic-structure interaction problems with model order reduction. , 2014, The Journal of the Acoustical Society of America.

[61]  Christian Soize,et al.  Post-buckling nonlinear static and dynamical analyses of uncertain cylindrical shells and experimental validation , 2014 .

[62]  H. Saunders,et al.  Acoustics: An Introduction to Its Physical Principles and Applications , 1984 .

[63]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[64]  Christian Soize,et al.  Uncertainty quantification in computational linear structural dynamics for viscoelastic composite structures , 2016 .

[65]  D. S. Jones,et al.  LOW-FREQUENCY SCATTERING BY A BODY IN LUBRICATED CONTACT , 1983 .

[66]  R. Duraiswami,et al.  Fast Multipole Methods for the Helmholtz Equation in Three Dimensions , 2005 .

[67]  David T. Wilton,et al.  Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-Structure Interaction Problem , 1992 .

[68]  Lothar Gaul,et al.  A comparison of FE–BE coupling schemes for large‐scale problems with fluid–structure interaction , 2009 .

[69]  Charbel Farhat,et al.  Progressive construction of a parametric reduced‐order model for PDE‐constrained optimization , 2014, ArXiv.

[70]  Paul A. Martin,et al.  Fluid-Solid Interaction: Acoustic Scattering by a Smooth Elastic Obstacle , 1995, SIAM J. Appl. Math..

[71]  Gene H. Golub,et al.  Matrix computations , 1983 .

[72]  Muhammad Ghulam Boundary Elements Methods for Incompressible Fluid Flow Problems , 2011 .

[73]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[74]  D. Golla Dynamics of viscoelastic structures: a time-domain finite element formulation , 1985 .

[75]  D. Rixen,et al.  General Framework for Dynamic Substructuring: History, Review and Classification of Techniques , 2008 .

[76]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .

[77]  D. Blackstock Fundamentals of Physical Acoustics , 2000 .

[78]  G. F. Miller,et al.  The application of integral equation methods to the numerical solution of some exterior boundary-value problems , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[79]  P. Hughes,et al.  Modeling of linear viscoelastic space structures , 1993 .

[80]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[81]  George W. Housner Dynamics of structures, Ray W. Clough and Joseph Penzien, McGraw-Hill, 1975, 634 pages, $21.50 , 1976 .

[82]  Wim Desmet,et al.  An Efficient Trefftz-Based Method for Three-Dimensional Helmholtz Problems in Unbounded Domains , 2010 .

[83]  M. S. Howe Acoustics of fluid-structure interactions , 1998 .

[84]  Stéphanie Chaillat,et al.  Multi-Level Fast Multipole BEM for 3-D Elastodynamics , 2009 .

[85]  T. Hughes,et al.  Finite element methods for the Helmholtz equation in an exterior domain: model problems , 1991 .

[86]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[87]  D. Ryckelynck,et al.  A priori hyperreduction method: an adaptive approach , 2005 .

[88]  Christian Soize,et al.  Variational-Based Reduced-Order Model in Dynamic Substructuring of Coupled Structures Through a Dissipative Physical Interface: Recent Advances , 2014 .

[89]  D. S. Jones,et al.  INTEGRAL EQUATIONS FOR THE EXTERIOR ACOUSTIC PROBLEM , 1974 .

[90]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[91]  David Natroshvili,et al.  Non‐local approach in mathematical problems of fluid–structure interaction , 1999 .

[92]  A. Preumont Twelve Lectures on Structural Dynamics , 2013 .

[93]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[94]  Christian Soize,et al.  Stochastic Models of Uncertainties in Computational Mechanics , 2012 .

[95]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[96]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[97]  Edward L. Wilson,et al.  Numerical methods in finite element analysis , 1976 .

[98]  J. Pandey,et al.  The Hilbert Transform of Schwartz Distributions and Applications , 1995 .

[99]  Youn-sik Park,et al.  New approximations of external acoustic–structural interactions: Derivation and evaluation , 2009 .

[100]  Carlos A. Felippa,et al.  Doubly asymptotic approximations for vibration analysis of submerged structures , 1982 .

[101]  K. Dovstam,et al.  Augmented Hooke's law in frequency domain. A three dimensional, material damping formulation , 1995 .

[102]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[103]  Y. Fung Foundations of solid mechanics , 1965 .

[104]  C. Farhat,et al.  Structure‐preserving, stability, and accuracy properties of the energy‐conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models , 2015 .

[105]  J. Tinsley Oden,et al.  A posteriori error estimation for acoustic wave propagation problems , 2005 .

[106]  Ralf Schweizer,et al.  Integral Equation Methods In Scattering Theory , 2016 .

[107]  M. Bonnet Boundary Integral Equation Methods for Solids and Fluids , 1999 .

[108]  R. Kress Linear Integral Equations , 1989 .

[109]  G. I. Schuëller,et al.  Uncertainties in Structural Analysis , 2006 .

[110]  F. Ihlenburg Finite Element Analysis of Acoustic Scattering , 1998 .

[111]  Christian Soize,et al.  Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .

[112]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[113]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[114]  Michel Bruneau,et al.  Fundamentals of Acoustics , 2006 .

[115]  Christian Soize,et al.  Time-domain formulation in computational dynamics for linear viscoelastic media with model uncertainties and stochastic excitation , 2012, Comput. Math. Appl..

[116]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction , 1972 .

[117]  F. Fahy,et al.  Sound and Structural Vibration: Radiation, Transmission and Response , 1987 .

[118]  C. Farhat,et al.  Efficient non‐linear model reduction via a least‐squares Petrov–Galerkin projection and compressive tensor approximations , 2011 .

[119]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[120]  G. I. Schuëller,et al.  On the treatment of uncertainties in structural mechanics and analysis , 2007 .

[121]  Christian Soize,et al.  Structural-acoustic modeling of automotive vehicles in presence of uncertainties and experimental identification and validation. , 2008, The Journal of the Acoustical Society of America.

[122]  T. Belytschko,et al.  A first course in finite elements , 2007 .